Altamira and Padre Piedra, Early Preclassic Sites in Chiapas, Mexico

by

DEE F. GREEN

and

GARETH W. LOWE

Publication No. 15

NEW WORLD ARCHAEOLOGICAL FOUNDATION
BRIGHAM YOUNG UNIVERSITY
PROVO, UTAH
1967
MAP OF CHIAPAS, MEXICO AND SOUTHEASTERN MESOAMERICA
Showing location of Altamira, Padre Piedra, and other important contemporary archeological sites.
Orders for and correspondence regarding the publications of The New World Archaeological Foundation should be sent to

DIRECTOR OF LIBRARIES
Brigham Young University
Provo, Utah

Price $3.00

Printed by
BRIGHAM YOUNG UNIVERSITY PRESS
Provo, Utah
PREFACE

During May and June of 1963 I was engaged by the BYU-New World Archaeological Foundation to make test excavations at two Preclassic sites in the state of Chiapas, Mexico. The first of these to be studied, Padre Piedra, is located near the San Miguel River, a tributary of El Dorado River which runs into the Grijalva River on the eastern fringe of the Frailesca region of Central Chiapas. The site was first reported by Sorenson (1956:12) in his survey of west-central Chiapas, and later Navarrete (1960:10) dug seven pits there (four of which were sterile), finding only 40 cm. of occupation deposit. These pits, however, produced what appeared to be both Cotorra and Dili-phase sherds, representing parts of the Early and Middle Preclassic developments in Mesoamerica. I undertook further work at Padre Piedra with one object of finding, if possible, some deeper stratigraphy that would provide a more complete ceramic history. I also hoped to locate a domestic occupation area. I was unable to carry out an additional assignment, that of determining the total extent of the site and something of its village nature by probing all extremities of the exposed erosion face of the arroyo edge surrounding the site on the north.

Altamira, the second site investigated, is located on the Pacific Coast of Chiapas near the town of Mazatán, west of Tapachula. Navarrete and Lowe had made brief surveys and were impressed with the quantity of Early and Middle Preclassic pottery and figurines found superficially, and noted a number of low mounds. My assignment here was four-fold: (1) to test as many mounds as possible before the rainy season; (2) cut through at least one mound with a tractor-powered backhoe to determine its composition; (3) obtain a good sherd sampling for sequential and comparative purposes; and (4) determine the extent of the occupation area and as much as possible of its nature in terms of a village site. The first three tasks were accomplished with reasonable results in view of the briefness of the three-week season. The fourth part of the project was not completed; many of the mounds were not tested in any way and others inadequately for the purposes of a settlement-pattern study. There was not sufficient time for a thorough surface collection nor for testing of non-mound areas. Accordingly, the extent of the site is not known to me and I learned little of its nature in a community sense. Some later work was done at the site in 1965 by Lowe (see Appendix and Discussion).

In July, 1963, after washing and some labeling of sherds in Mexico, I returned to the campus of Brigham Young University where the laboratory analysis and writing for this Paper were completed. Since this was an exploratory project, its report is essentially an inventory of pottery types and their occurrence plus a description of other artifacts. Larger cultural significances may be forthcoming from future studies. Insofar as possible in this Paper I have used existing typologies as previously determined by other investigators.

Tables 2, 3, 5, 6, and 8 were prepared by the 7040 electronic computer. The FORTRAN program used to compile the data, make the computations, and print out the tables proved versatile enough that it could readily be adapted for a variety of data processing. Many tabulations run up in the laboratory are not included in this report either for being repetitive or for reason of the inadequacy of original field sample data.

Fortunately for this report, Bruce W. Warren was also on the B.Y.U. campus during its preparation; his intimate knowledge of the Chiapa de Corzo pottery, which serves as a master sequence for central Chiapas, was extremely helpful, especially with the analysis of the Padre Piedra material. I am also indebted to Michael Coe for his help, both by correspondence and through his personal examination of a small sample of the Altamira pottery which is identical in many ways to his material from La Victoria and Salinas La Blanca. Had the report on the latter site been completed at the time of my study, it would have been possible to demonstrate better the relationship between the pottery from Altamira and the Guatemalan sites.
Gratitude is also expressed to the government of Mexico and to its Institute of Anthropology and History representative in Chiapas, Prof. Armando Duvalier, Director of the Regional Museum in Tuxtla Gutiérrez. Nor could the work have been accomplished without the cooperation of Sr. Artemio Aguilar, who as owner of Padre Piedra not only granted permission to dig but graciously allowed us to stay on the ranch. I wish also to express appreciation to Sr. Francisco González Juaristi, owner of the Altamira Ranch, and to Sr. Roberto Palacios Estrada, owner of the Peis tal Ranch, both of whom were most cooperative in permitting excavation on their lands. In addition, Sr. Juaristi donated several surface finds.

I am especially grateful to Jorge Nuri cumbo and Alejandro Sánchez of Chiapa de Corzo who as my local supervisors tolerated my gringo ways and oversaw the workers on both digs, and also to Eduardo Martínez, BYU-NWAF topographer, who drew the maps for both sites.

Gareth W. Lowe, Field Director of the BYU-NWAF, who instigated my project, has been particularly encouraging and helpful in solving many problems both in the field and especially with the reorganization and revision of the manuscript and illustrations. His final willingness to co-author the report is a much-appreciated effort to make it more meaningful.

Many others have contributed. Dr. Ross T. Christensen, Chairman of the BYU Department of Archaeology, was cooperative in allowing use of laboratory facilities. Miss Betty Marker devoted long hours to the illustrations for this report, and Dale Berge assisted with mineral identifications of ceramic pastes and the description of stone artifacts. To both I express my warmest appreciation. I am also grateful to Ray T. Matheny who made many helpful suggestions through the manuscript stage and to Louis Nackos who studied the pottery from Mounds 3 and 6. Special thanks go to John McLaughlin and the BYU Computer Research Center for their extensive cooperation in working with my computer data, and to Dr. H. Gill Hilton for consultations on statistical problems.

Dee F. Green

Provo, Utah

September, 1964

* * * * *

There is, for me, a fascination attached to the observation of ancient pottery in Mesoamerica which I lack words to describe adequately. That this ceramic appeal results from the destructive climate in which we work, having left us little else with which to gauge the nature of the enigmatic first civilizations of America, there can be no argument. Early and Middle Preclassic pottery in Mexico and Central America is not outstanding, per se, either artistically or technologically, in terms of its world contemporaries during the first and second millennia before our era. Yet its survival as the best of the all-too-few clues available for personifying the character and charting the culture history of its makers gives it status unique in archaeology. The American Southwest, the Andean Area, Egypt, the Near East, all have their dry desert regions and peculiar customs which have preserved examples of painting, woodwork, weaving, basketry, and in the latter instances metalworking, sculpture, stone architecture, and engraved inscriptions for extending our knowledge of even distant forebears. In tropical lowland Middle America we have only pottery, stone hand-tools, occasional food remains, and the merest vestiges of originally wood and clay architecture with which to trace the beginnings of civilization in an area where it eventually achieved the highest order ever known in the prehispanic New World. And only pottery is constantly abundant and pliable to the functions, fancies and commerce of its makers.

With that introduction, my feelings of elation upon visiting Altamira with Carlos Navarrete in the spring of 1963 can be appreciated perhaps even by the uninitiated. There, in a 500-acre, almost level field, newly cleared and freshly plowed, potsherds of recognizable Early and Middle Preclassic types
were noted as abundant over most of the gentle rises bordering as a rule shallow depressions or lagunas. Of further significance, almost no pottery of later date was included in the surface collections. In spite of our keen interest, neither Navarrete nor myself had time to make the desired explorations of this promising site. Dee F. Green, as a graduate student, was therefore given the assignment. The enthusiastic vigor with which Green applied his considerable energies to this project in both field and laboratory is highly appreciated.

The archeological situation at Altamira proved somewhat more complicated than had been expected. Tested elevations seem either the result of redeposition or of a high degree of mixture due to luxuriant root and rodent activity in slowly accruing shallow and very sandy deposits. Neither layering suggestive of occupational horizons nor obvious dumps were anywhere identified in 1963.

Hopes to determine the rudiments of settlement patterns at Altamira and of comparing them with similar data to be obtained for the partially contemporary early inland village site of Padre Piedra were not fully realized. Problems of pottery identification also inevitably arose and, in hindsight, were not always resolved in the most satisfactory manner. These shortcomings are not the fault of the senior author but rather the natural consequence of an unrealistic expectation of what could be accomplished during three-week field seasons at each site followed by practically unsupervised laboratory analysis. Further, my instruction that existing typologies be utilized has resulted in some of the very confusion which we had hoped to avoid, since unexpectedly the Altamira collections included, and in fact were primarily composed of, a transitional Early Preclassic complex not at that time described in print (the Cua-

dros-Jocotal of Salinas La Blanca; Coe and Flannery, 1967).

Primarily in acute realization of the foregoing, I have labored to revise the text of this report so that it will accord with "the greater knowledge" now at hand, working always with the appreciated consent and encouragement of my associate. Additionally, I carried out further brief exploratory excavations at Altamira during April of 1965. These trenches, in part increasing the area investigated, support and amplify the conclusions of Green, particularly as regards the postulated presence of a true Ocós-like occupation somewhere at the site. The results of this new work appear in the Appendix, and the information gained therefrom is included in the final chapter of discussions for which I am solely responsible.

A warm-hearted second is added to all acknowledgments made above by the senior author. I also here profess our indebtedness to the late, lamented, artist and lover of all higher culture, Luis Ribera Morfin, of Tapachula. Prof. Morfin personally directed our initial visit to Altamira. Without his keen show of interest we might never have known or appreciated the significance of this early agricultural settlement.

My particular gratitude is extended to the family of Sr. Francisco Juaristi. The late Don Paco and Sra. had graciously made us at home at Altamira on repeated occasions and wholeheartedly encouraged the investigations made at their most attractive and progressive ranch. I dedicate these efforts to their memory.

Gareth W. Lowe

Tuxtla Gutiérrez, Chiapas, México
December, 1966
CONTENTS

PREFACE ... v

I. EXCAVATIONS AT ALTAMIRA, 1963 1
 Introduction ... 1
 Environment .. 1
 Topography .. 1
 Excavations .. 2
 Mound Stratigraphy ... 2
 Ceramic Sequence and Chronology 2
 The Mounds .. 4
 Mound 1 ... 4
 Mound 2 ... 8
 Mound 3 ... 8
 Mound 6 ... 9
 Mounds 8 and 9 .. 10
 Mound 10 ... 10
 Mounds 11 and 12 .. 13
 Altamira Pottery .. 14
 Ceramic Types .. 14
 Early Preclassic ... 14
 Late Preclassic ... 22
 Clay Figurines .. 24
 Altamira Artifacts .. 27
 Stone ... 27
 Chipped Stone Implements 27
 Ground Stone Utensils 28
 Bone Artifacts .. 31
 Faunal Remains .. 31
 Conclusions ... 32

II. EXCAVATIONS AT PADRE PIEDRA 33
 Introduction ... 33
 Excavations ... 35
 Stratigraphy .. 35
 Ceramic Sequence .. 35
 Trenches ... 35
 Padre Piedra Pottery .. 42
 Ceramic Types Primarily of the Cotorra Phase 43
 Ceramic Types Common to Cotorra and Dili Phases 44
 Ceramic Type Primarily of the Dili Phase 47
 Late Classic Pottery .. 47
 Clay Figurines .. 48
 Padre Piedra Artifacts .. 50
 Miscellaneous Clay Objects 50
 Stone Tools .. 50
 Conclusions ... 51

III. DISCUSSION .. 53
 The Early Preclassic Period Defined 54
 Early Preclassic Beginnings at Altamira 55
 The Barra Phase ... 56
The Ocós Phase ... 57
The Question of Manioc versus Maize 58
The Problem of Long Range Diffusion 60
The Possibly Important Role of Honduras 61
Stone Bowls: Antecedents or Contemporaries? 62
The Pervasive Simple Vessel Forms 63
Possibly Northern Asiatic Traits 64
The Arguments for Migrations 64
The Olmec Intrusions ... 65
The Cotorra and Cuadros Traditions 66
The Jocotal and Dili Phase Overlap 68
Evidence for Violence .. 69
The Tlatilco Style Absence and Diffusion Gaps 70
The Olmec Isthmian Block 71
Rise of the Mesoamerican Dichotomy 72
The Izapa Situation .. 73
Conclusions .. 74
Chronological Clarifications 74
The Fluid Nature of the Communities 75
The Lowland Village Material Culture 76
Inferences of Non-material Culture 77
Recommendations ... 79

APPENDIX: RESULTS OF THE 1965 INVESTIGATIONS
AT ALTAMIRA Gareth W. Lowe 81
The 1965 Excavations ... 82
Mound 19 ... 82
Mound 20 ... 84
Mound 1 ... 84
The Altamira Ceramic Sequence Redefined 84
The Barra Phase .. 85
The Altamira-Ocós Phase 86
The Altamira-Cuadros Phase 86
The Altamira Early Jocotal Subphase 86
The Altamira Late Jocotal Subphase 86
The Crucero Phase ... 87
The Early Classic Period 87
Cultural Stratigraphy by Trench, 1965 88
Trench 19-A ... 88
Trench 19-B ... 89
Trench 19-CEP ... 89
Trench 19-D ... 91
Trench 19-I ... 91
Trench 20-A .. 94
Trench 1-A ... 94
Altamira Pottery Types 97
Ceramic Analysis ... 97
Barra Phase ... 97
Cotán Grooved Red ... 97
Petacalapa Black ... 100
Monte Incised ... 102
Tusta Red .. 104
Altamira-Ocós Phase 104
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocós Specular Red</td>
<td>104</td>
</tr>
<tr>
<td>Michis Thin Tecomate</td>
<td>104</td>
</tr>
<tr>
<td>Altamira-Cuadros Phase</td>
<td>106</td>
</tr>
<tr>
<td>Guamuchal Brushed</td>
<td>106</td>
</tr>
<tr>
<td>Pampas Black-and-white</td>
<td>108</td>
</tr>
<tr>
<td>Amatillo White</td>
<td>110</td>
</tr>
<tr>
<td>Tilapa Red-on-white</td>
<td>110</td>
</tr>
<tr>
<td>Cuchillo White</td>
<td>110</td>
</tr>
<tr>
<td>Mendez Red Rim</td>
<td>112</td>
</tr>
<tr>
<td>Mapache Red Rim</td>
<td>112</td>
</tr>
<tr>
<td>Altamira Early Jocotal Subphase</td>
<td>112</td>
</tr>
<tr>
<td>Siltepec White</td>
<td>112</td>
</tr>
<tr>
<td>Arenera Red-on-buff</td>
<td>114</td>
</tr>
<tr>
<td>Suchiate Brushed</td>
<td>114</td>
</tr>
<tr>
<td>Squic Red</td>
<td>116</td>
</tr>
<tr>
<td>Culebra Gray</td>
<td>118</td>
</tr>
<tr>
<td>Altamira Late Jocotal Subphase</td>
<td>118</td>
</tr>
<tr>
<td>Taconá Incised White</td>
<td>118</td>
</tr>
<tr>
<td>Desvio Smooth Tecomate</td>
<td>120</td>
</tr>
<tr>
<td>Altamira Late Crucero Subphase</td>
<td>120</td>
</tr>
<tr>
<td>Late Crucero Red-on-orange</td>
<td>120</td>
</tr>
<tr>
<td>Late Crucero Orange</td>
<td>122</td>
</tr>
<tr>
<td>Late Crucero Plain</td>
<td>122</td>
</tr>
<tr>
<td>Clay Artifacts</td>
<td>122</td>
</tr>
<tr>
<td>Figurines</td>
<td>122</td>
</tr>
<tr>
<td>Sherd Disks and Scrapers</td>
<td>126</td>
</tr>
<tr>
<td>Pottery Earspool</td>
<td>126</td>
</tr>
<tr>
<td>Stone Artifacts</td>
<td>128</td>
</tr>
</tbody>
</table>

REFERENCES

FIGURES

- Map of Southeastern Mesoamerica: xi
- Map of the Altamira–La Victoria Region: xiv
- Map of the Altamira Archeological Site: facing 2
- Beginning Excavations at Altamira: 4
- Plan of Mound 1 Grid, Altamira: 5
- Sections of Grid Pits in Mound 1, Altamira: 5
- Section of Grid Pit N14-E14, Mound 1, Altamira: 5
- Burial 1, Altamira: 8
- Burial 3, Altamira: 10
- Section of Backhoe Trench in Mound 9, Altamira: 10
- Section of Backhoe Trench 1, Mound 10, Altamira: 11
- Sections of Pit F-2, Mound 10, Altamira: 12
- Mound 10 Backhoe Trench Probe Pit: 12
- Black Pottery, Altamira: 15
- Black Sherd Profiles, Altamira: 15
- Gray Tecomate, Altamira: 16
- Gray Pottery, Altamira: 16
- Gray Sherd Profiles, Altamira: 17
- Coarse Pottery, Altamira: 18
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>Coarse Tecomates, Altamira</td>
<td>18</td>
</tr>
<tr>
<td>20.</td>
<td>Coarse Pottery Stools, Altamira</td>
<td>19</td>
</tr>
<tr>
<td>21.</td>
<td>Coarse Sherd Profiles</td>
<td>19</td>
</tr>
<tr>
<td>22.</td>
<td>Negrusco Coarse Pottery, Altamira</td>
<td>19</td>
</tr>
<tr>
<td>23.</td>
<td>White-to-buff Pottery, Altamira</td>
<td>20</td>
</tr>
<tr>
<td>24.</td>
<td>Vessel Support or Leg, Altamira</td>
<td>20</td>
</tr>
<tr>
<td>25.</td>
<td>Red-on-buff Pottery, Altamira</td>
<td>20</td>
</tr>
<tr>
<td>26.</td>
<td>Ocós Buff Sherd, Altamira</td>
<td>21</td>
</tr>
<tr>
<td>27.</td>
<td>Jibalba Gray Pottery, Altamira</td>
<td>21</td>
</tr>
<tr>
<td>28.</td>
<td>Conchas Orange Pottery, Altamira</td>
<td>22</td>
</tr>
<tr>
<td>29.</td>
<td>Miscellaneous Late Preclassic Pottery, Altamira</td>
<td>23</td>
</tr>
<tr>
<td>30.</td>
<td>Hollow Figurine Heads, Altamira</td>
<td>24</td>
</tr>
<tr>
<td>31.</td>
<td>Olmecoid Figurine Heads, Altamira</td>
<td>24</td>
</tr>
<tr>
<td>32.</td>
<td>Solid Figurine Heads, Altamira</td>
<td>25</td>
</tr>
<tr>
<td>33.</td>
<td>Figurine Toros and Limbs, Altamira</td>
<td>26</td>
</tr>
<tr>
<td>34.</td>
<td>Chipped Stone Implements, Altamira</td>
<td>27</td>
</tr>
<tr>
<td>35.</td>
<td>Stone Bowls, Altamira</td>
<td>28</td>
</tr>
<tr>
<td>36.</td>
<td>Metate Fragments, Altamira</td>
<td>28</td>
</tr>
<tr>
<td>37.</td>
<td>Ovoid Manos, Altamira</td>
<td>29</td>
</tr>
<tr>
<td>38.</td>
<td>Oblong Manos, Altamira</td>
<td>29</td>
</tr>
<tr>
<td>39.</td>
<td>Hammerstones, Altamira</td>
<td>30</td>
</tr>
<tr>
<td>40.</td>
<td>Miscellaneous Ground Stone Artifacts, Altamira</td>
<td>30</td>
</tr>
<tr>
<td>41.</td>
<td>Bone Artifacts, Altamira</td>
<td>31</td>
</tr>
<tr>
<td>42.</td>
<td>Monument 1, Padre Piedra</td>
<td>33</td>
</tr>
<tr>
<td>43.</td>
<td>Aerial View of the Region of Padre Piedra</td>
<td>34</td>
</tr>
<tr>
<td>44.</td>
<td>Map of the Padre Piedra Archeological Site</td>
<td>facing 34</td>
</tr>
<tr>
<td>45.</td>
<td>Trench II, Padre Piedra</td>
<td>36</td>
</tr>
<tr>
<td>46.</td>
<td>Trench III, Padre Piedra</td>
<td>38</td>
</tr>
<tr>
<td>47.</td>
<td>West Face of Trench III, Padre Piedra</td>
<td>38</td>
</tr>
<tr>
<td>48.</td>
<td>Profile of Trench III, Padre Piedra</td>
<td>38</td>
</tr>
<tr>
<td>49.</td>
<td>Trench IV, Padre Piedra</td>
<td>39</td>
</tr>
<tr>
<td>50.</td>
<td>Trench V, Features and Pits, Padre Piedra</td>
<td>41</td>
</tr>
<tr>
<td>51.</td>
<td>Plan of Excavated Squares, Trench V, Padre Piedra</td>
<td>42</td>
</tr>
<tr>
<td>52.</td>
<td>Padre Piedra Pottery: Límanude Painted</td>
<td>43</td>
</tr>
<tr>
<td>53.</td>
<td>Padre Piedra Pottery: Revolución Smudged</td>
<td>43</td>
</tr>
<tr>
<td>54.</td>
<td>Padre Piedra Pottery: Cutilínoco Red and White</td>
<td>44</td>
</tr>
<tr>
<td>55.</td>
<td>Padre Piedra Pottery: Vergel White-to-buff</td>
<td>44</td>
</tr>
<tr>
<td>56.</td>
<td>Padre Piedra Pottery: Tapalapa Unslipped</td>
<td>45</td>
</tr>
<tr>
<td>57.</td>
<td>Padre Piedra Pottery: Padre Piedra Black</td>
<td>45</td>
</tr>
<tr>
<td>58.</td>
<td>Padre Piedra Pottery: Chuquipaca Smoothed</td>
<td>46</td>
</tr>
<tr>
<td>59.</td>
<td>Padre Piedra Pottery: Chuquipaca Pichucalco</td>
<td>46</td>
</tr>
<tr>
<td>60.</td>
<td>Padre Piedra Pottery: Aberrant Gray Ware</td>
<td>47</td>
</tr>
<tr>
<td>61.</td>
<td>Padre Piedra Pottery: Vergel Tonalá</td>
<td>47</td>
</tr>
<tr>
<td>62.</td>
<td>Padre Piedra Pottery: Late Classic Sherds</td>
<td>48</td>
</tr>
<tr>
<td>63.</td>
<td>Solid Slab Vessel Supports, Padre Piedra</td>
<td>48</td>
</tr>
<tr>
<td>64.</td>
<td>Jaguar Effigy Vessel, Padre Piedra</td>
<td>48</td>
</tr>
<tr>
<td>65.</td>
<td>Clay Figurine Fragments, Padre Piedra</td>
<td>49</td>
</tr>
<tr>
<td>66.</td>
<td>Miscellaneous Clay Objects from Padre Piedra</td>
<td>50</td>
</tr>
<tr>
<td>68.</td>
<td>Map of Altamira Area Investigated in 1965</td>
<td>82</td>
</tr>
<tr>
<td>69.</td>
<td>Mound 19 Looking South</td>
<td>83</td>
</tr>
<tr>
<td>70.</td>
<td>North-South Section of Trench 19-H</td>
<td>92</td>
</tr>
<tr>
<td>71.</td>
<td>Section of Trench 1-A</td>
<td>94</td>
</tr>
<tr>
<td>72.</td>
<td>Cotán Grooved Red Pottery; Reconstructed Forms</td>
<td>99</td>
</tr>
</tbody>
</table>
73. Cotán Grooved Red Sherds .. 101
74. Petacalapa Black Sherds ... 101
75. Monte Incised Sherds .. 103
76. Tusta Red Sherds ... 105
77. Ocós Specular Red Sherds ... 105
78. Michis Thin Tecomate Sherds 105
79. Guamuchal Brushed Sherds ... 107
80. Pampas Black-and-white Sherds 109
81. Amatillo White Sherds .. 111
82. Tilapa Red-on-white Sherds ... 111
83. Cuchilla White Sherds ... 111
84. Méndez Red Rim Sherds ... 113
85. Mapache Red Rim Sherds .. 113
86. Siltepec White Sherds .. 115
87. Arenera Red-on-buff Sherds ... 115
88. Suchiate Brushed Sherds .. 117
89. Squic Red Sherds ... 117
90. Culebra Gray Pottery .. 119
91. Tacaná Incised White Sherds .. 119
92. Late Crucero Pottery .. 121
93. Early Preclassic Figurine Eye Types, Altamira 123
94. Figurine Heads .. 125
95. Bodies, Limbs, Net Weight, Zoomorphic Figurines 127
96. Reworked Sherds .. 127
97. Stone Artifacts .. 129
98. Stone Bowls ... 130

TABLES
1. Chronological Table for Chiapas and the Soconusco 3
2. Sherd Count, Mound 1, Pit W5-S1, Altamira 6
3. Sherd Count, Mound 1, Pit N14-E14, Altamira 7
4. Distribution of Adobe in Mound 1, Altamira 7
5. Sherd Count, Mound 2 Pit, Altamira 9
6. Sherd Count, Mound 10, Pit F-2, Altamira 13
7. Sherd Counts, Trenches I, II, Padre Piedra 37
8. Rim Sherd Count, Trench III, Padre Piedra 39
10. Sherd Count by Vessel Forms, Trench 19-B, Altamira 89
11. Sherd Count, Trench 19-CEF, Altamira 90
12. Sherd Count, Trench 19-D, Altamira 91
14. Sherd Count by Vessel Form, Trench 19-H, Altamira 93
15. Sherd Count, Trench 20-A, Altamira 94
16. Sherd Count, Trench 1-A, Altamira 96
17. Obsidian Flake Count, Trench 19-H, Altamira 128

CHART
1. Chronological Position of Ceramic Complexes at Early
 Preclassic Sites in Chiapas and Guatemala 52

xiii
Figure 1. MAP OF THE ALTAMIRA—LA VICTORIA REGION
Map of the southeastern Soconusco coast region, showing relationship of Altamira to modern communities, communications, and principal early Preclassic sites investigated to date (shown by triangles).
I. EXCAVATIONS AT ALTAMIRA, 1963

INTRODUCTION

ENVIRONMENT

Altamira lies in the geographic province of Soconusco (the Aztec Xoconochco) on the Pacific Coast of Chiapas near the frontier with Guatemala (Frontispiece). The nearest town is Mazatán, approximately 3 kilometers to the east, and the ocean is about 2 km. southwest (Fig. 1). The archeological site is located in the southwest corner of the Altamira Ranch but also extending into the Peistal Ranch. No summary of the ecology or the history of the region will be included here, since Coe (1961) has already made such for a similar region in his report on excavations at La Victoria, near Ocós, Guatemala. The reader is referred to that publication not only for this information but for comparative material most similar to our own. Altamira is located only about 40 miles northwest of the Guatemalan site.

As at Ocós, the eastern end of the Pacific coastal plain in Chiapas is flat, hot, and relatively dry (under 1500 mm. annual precipitation) as compared to the hill and mountain region a few miles north (up to and exceeding 4000 mm.). The dry season is unusually lengthy, as a rule extending from middle September through June. However, the lowness of the land (a few meters above sea level at Altamira) and the nearness of the water table permit the growth of tall rain forest wherever drainage is adequate and the land uncultivated.

Both the Altamira and the Peistal ranches are now growing cotton, a very recent mechanized development well adapted to the level coastal terrain. The archeological area, with the exception of a small milpa on the east in corn, had been freshly disked for planting and in June at the end of the dry season was extremely dusty. In the numerous depressions, known locally as "lagunas," no plowing had been done and a tough grass covered them. Most of these sumps also contained large tree trunks which had been cleared from the adjacent land a few years previously.

TOPOGRAPHY

No aerial photographs of the Mazatán municipio are available. The map in Figure 1 is based on old topographic plans and modern road maps. The archeological site map included as Figure 2 is a rapid plane-table survey made by Eduardo Martínez. The 20 cm. contour level shown on the plan exaggerates the relief, since, even including the shallow lagoons and the cultural accumulations, the total relief for the area is scarcely three meters. Except for the lagoons, the ranch land as a whole has a very level appearance, varied slightly in the areas of archeological occupation. The ranch foreman stated that in preparing the ground for planting an effort is made to remove soil from the tops of the mounds and deposit it in the shallow areas. The tops of the mounds, therefore, as a rule are barren of the humus zone.

The low, amorphous mounds of Altamira tend to cluster in groups. Some are close to small lagoons which may have served as borrow pits for construction fill, whereas others are quite distant from any such depressions. Other mound clusters are located in the unmapped portions of the site extending westward, southward, and northward. The area mapped was chosen as that most suited for investigation, since it was cleared, central, and of easy access.

Cutting across the southeastern end of the mapped portion of the site is a canal recently dug to drain the lagoons during the wet season and to prevent flooding of the adjacent low-lying land. This canal cuts through portions of several of the lower mounds. A preliminary examination of the canal walls revealed sherds to be abundant only in the raised area later designated as Mound 10, and this, together with subsequent testing of Mounds 8 and 12, suggests that these latter are largely natural accumulations, as may be others in the so-far-untested contiguous areas. A quick run by car through a field and pasture on the west of the mapped area revealed a few small mounds with sparse artifact dis-
A wooded area farther west was uninvestigated, so that the westward extent of the archaeological zone is undetermined. The southeastern limit, however, seems definitely to be Mound 12, since inquiry and brief survey showed no cultural material on the noticeably flatter terrain extending a mile or so farther southeastward.

Northeast of Mound 16 in the area that has been cleared, there is a rather large, presently occupied mound (Mound 19; see Appendix). The Altamira ranch houses farther to the northeast also occupy what appears to be an artificial sherd-bearing area. To the south across the drainage canal there are a few small mounds but with sparse surface indications of occupation. No reconnaissance was attempted south of the Peistal ranch buildings on the west.

EXCAVATIONS

Test pits were uniformly 2 x 2 meters square with the exception of Pit F-1 in Mound 10 which was one meter square. All hand excavation was conducted in 10 cm. levels for maximum arbitrary vertical control, since significant natural stratigraphy was not apparent anywhere. In addition to the hand-dug pits, a number of trenches were excavated by the judicious use of a tractor-powered backhoe which was a great boon to investigations. Thus, even in the brief time available, it was possible to dig a trench completely through Mound 10, an operation that would normally employ large numbers of men at greater expense in time and money. Tractor trenches were dug in 50 cm. levels. Where interested in a high degree of vertical control, Green relied upon the hand-dug test pits, and used the backhoe for test probing, horizontal exploration, and removal of the overburden from the burials in Mounds 1 and 6.

MOULD STRATIGRAPHY

We had envisioned a sampling of all mounds at Altamira, but unfortunately the advent of the rainy season prevented testing Mounds 4 and 5 and 13 to 18. Mound 14 of this latter group is the largest at Altamira and certainly should be tested along with the others in its vicinity. Otherwise a reasonably adequate sampling was secured of the principal elevated areas. Sufficient ceramic material was recovered from these probes to justify certain conclusions about the general cultural homogeneity of most of the deposits sampled. The apparently single-stage and partly constructional nature of most of the raised portions of the tested mounds at Altamira gives the site an only slightly different aspect from that of the largely contemporary occupation zone already referred to at La Victoria nearby in Guatemala. There the sampled deposits seem to have been more the result of steady refuse (middlen) accumulation over very long time periods, but they also definitely were accentuated by building debris (during the Conchas 2 subphase; Coe, 1961:33-34).

CERAMIC SEQUENCE and CHRONOLOGY

At the time of analysis the bulk of the potsherds recovered at Altamira seemed to fit rather well into the pottery typology established for La Victoria (ibid. 47-90). Local differences were apparent, of course, but examination by Coe of a selection of Altamira sherds and a comparison with his descriptive text left no question that ceramically at least the two sites belong to the same cultural continuum. Accordingly, the Altamira pottery and culture history have been described in terms of the established coastal Guatemala sequence, shown related to the Chiapa de Corzo sequence in Table 1 opposite, and Chart 1. The correlation and estimated absolute dates for the earlier coastal Guatemala phases indicated in Table 1 follow the chronology suggested for Salinas La Blanca (see below), which is based upon four radiocarbon dates of the Cuadros phase from that site and one of the Conchas phase from adjacent Rio Naranjo (Coe and Flannery, 1967:68). The Conchas 2 date is less precisely fixed. Coe had earlier estimated a period of about 400 years, ca. 700 to 300 B.C., for Conchas 2 at La Victoria (1961:121). Lowe has suggested the dates of 550-250 B.C. for the roughly equivalent Escalera and Francesa phases at Chiapa de Corzo (1962:195). Recent radiocarbon dates from Izapa tend to support the slightly later dating (Lowe, in preparation), as does Coe's own updating of Conchas beginnings from 1000 to 800 B.C.

Most of the occupational debris or mound fill tested at Altamira appeared at first to be
ALTAMIRA
ARCHAEOLOGICAL ZONE
MUNICIPALITY OF MÁZATAN, CHIAPAS

Contour interval: 20 Cm.
Surveyed by Eduardo Montesinos E.

FIGURE 2. MAP OF THE ALTAMIRA ARCHAEOLOGICAL SITE
Table 1. Chronological Table for Central Chiapas and the Soconusco Region

(for slightly revised chronology see Chart 1, page 52)

<table>
<thead>
<tr>
<th>CHIAPA DE CORZO PHASES</th>
<th>GENERAL CULTURAL PERIODS</th>
<th>ESTIMATED BEGINNING DATES</th>
<th>COASTAL GUATEMALA PHASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paredon</td>
<td>Late Classic</td>
<td>A.D. 800</td>
<td></td>
</tr>
<tr>
<td>Maravillas</td>
<td>Middle Classic</td>
<td>550</td>
<td>Marcos</td>
</tr>
<tr>
<td>Laguna</td>
<td>Early Classic</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Jiquipilas</td>
<td>Late Protoclassic</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Istmo</td>
<td>Early Protoclassic</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Horcones</td>
<td></td>
<td>100 B.C.</td>
<td>Crucero</td>
</tr>
<tr>
<td>Guanacaste</td>
<td>Late Preclassic</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Francesa</td>
<td></td>
<td>450</td>
<td>Conchas 2</td>
</tr>
<tr>
<td>Escalera</td>
<td>Middle Preclassic</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Dili</td>
<td>Early Preclassic</td>
<td>800</td>
<td>Conchas 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Jocotal</td>
</tr>
<tr>
<td>Cotorra</td>
<td></td>
<td>1500 B.C.</td>
<td>Ocós</td>
</tr>
</tbody>
</table>

attributable to redeposition during the Conchas and Crucero phases, since pottery types and shapes supposedly of those cultural entities were found almost throughout.

Examination of Coe's pottery-type percentage graphs (1961:Figs. 8-10) demonstrates that the Ocós Black, Ocós Gray, and Victoria Coarse types, though beginning in the Ocós phase and carrying through Conchas 1, are equally typical of the succeeding Conchas 2 subphase, to which we relegated some Altamira occupation. Coe has since recognized the error of assigning similarly slipped potsherds from differing phases to a single type (Coe and Flannery, 1967:21), but overcame this "lumping" defect somewhat through recognition of shape and decoration differences through time. This was not done for Altamira, unfortunately (p. 7). In spite of this methodological fault, there was apparent an admixture, or lack of expected "purity," in material from midden mounds at Altamira which was out of conformity with the pottery sequence as known at either La Victoria or Chiapa de Corzo. This was particularly noteworthy in the greater persistency than expected of what were thought to be strictly early forms. This proved to be the result of deliberate addition of earlier refuse material as fill during terminal Late Preclassic platform construction, placed over earlier occupation loci.

As we began the analysis, a very slight Ocós and a primary Conchas 1 occupation underlying most mounds at Altamira were suspected; as discussed in the Pottery section following, a better correlation is indicated with the newly established Cuadros and Jocotal phases of Salinas La Blanca (Coe and Flannery, 1967:67). However, as the latter-phase materials from these companion sites to La Victoria had not yet been published, Green restricted the present tabulation of Early and Late Preclassic pottery at Altamira to 6 generalized types plus one locally distinct type and one miscellaneous category:

- Black
- Gray
- Coarse (with Negroesco Coarse as a local variation)
- White-to-buff
- Red-on-buff
- Jibalba Gray
- Conchas Orange
- Other (minor La Victoria types combined)
The pottery fragments recovered during the investigations in Mounds 3 and 6 are to a greater degree of the Late Preclassic category. In these mounds Late Preclassic sherds were found mixed with the earlier sherds from top to bottom. This relatively late pottery is seemingly related to the La Victoria Crucero phase (Coe, 1961:83-86). The Altamira Late Preclassic pottery characteristics are briefly listed at the end of the Pottery section. Since the Crucero ceramic complex was being redefined (Coe and Flannery, 1967:47-57), no attempt was made to assign the small Altamira collection to specific type categories.

A summary of the mound excavations and stratigraphic indications follows.

THE MOUNDS

MOUND 1

The dirt road separating the Altamira and Peistal ranches runs just west of the middle of Mound 1 which extends northeast and southwest of it and is about 1.80 m. high. An examination of the several mounds in the area indicated that Mounds 1, 6, 10, and 14 had the most abundant evidence of ancient occupation. As Mound 6 was partly in milpa, it was decided merely to put in a single pit there, cut through Mound 10 with the backhoe, and reserve Mounds 1 and 14 for the most intensive sampling at the site. As already stated, the rains arrived before Mound 14 could be investigated.

Two base lines were laid out on the surface of Mound 1, a northwest-southeast line that ran along the side of the road, and a northeast-southwest line which ran across the summit (Fig. 3). The grid was identified by numbers on the southeast stake of each unit, and squares W5-S1, N1-E1, N1-E9, N1-E16,
N5-E14, and N14-E14 were dug (Fig. 4). The most striking feature of the four pits along the top of the mound is the lack of lensing apparent in the profiles (Fig. 5). All four sides of each pit were surprisingly uniform. An anticipated complexity in the stratigraphy was found only on the flanks of the mound (this proved to be generally true for the site, with one notable exception in Mound 10).

The approximately 20 cm. of plow zone noted in the profile is quite uniform over the site. Sherds from this zone are badly weathered and marked by plow and disk. The next lower zone is uniformly tan in color from mound to mound at Altamira, and, whatever its origin, contains abundant potsherds. It is drawn as separated from the sandy clay zone beneath it by a thin line, but there is in fact no such sharp separation. Rather, there are about 5 cm. of transition in which sand grains become progressively fewer toward the upper limit. The broken line in Figure 5 represents the bottom of the occupation zone which, with the exception of W5-S1, occurs just above the sterile sandy clay.

Sherd content by general type, quantity, and percentage is shown in Table 2 for Pit W5-S1 dug at the highest point of Mound 1. Levels in all pits were measured from the same zero point at the summit of Mound 1 so that the actual surface level of each pit varied in number according to its level below datum. None of the other four pits showed any notable divergence from the sherd distribution pattern shown in Table 2 for W5-S1. Neither these sherd data nor the pit profiles suggest any obvious division of the Mound 1 deposit into chronologically or culturally distinct units save for a shallow original occupation which seems to precede the build-up of the mound proper.

In a final test probe, Pit N14-E14 was dug at the base of the Mound 1 elevation at the edge of the adjacent lagoon. It was dug in 10 cm. levels also, but measured from the actual surface at that point. Both the pit profile (Fig. 6) and the sherd distribution (Table 3) suggest some erosion from the mound slope. The gray clay zone, although not as mottled as the dark mottled clay zone of Mound 10, probably represents a mixing of the humus and tan clay layers through erosion plus the effects of poor drainage. This
pit produced more sherds (1131) than any of the pits in the mound proper, and almost four times that of Pit N5-El4 on the immediate slope above. It also produced the greatest concentration of clay figurine fragments (27), which again might be interpreted as the result of discarding refuse at the edge of the mound.

Nevertheless, the deposit sampled by Pit N14-El4 has the same general history as that of the slope areas of the more elevated mound area. The 1.5 m. of cultural deposit encountered in this pit at the level of the lagoon is actually identical to the average deposit depth found by the five pits made in the mound. In other words, the mound is a cultural accumulation over a natural rise in the terrain.

Three levels of artifacts recovered from the basal sand zone in N14-El4 undoubtedly represent undisturbed refuse, in contrast to that above which has been repeatedly disturbed by building and other domestic activity, one supposes. As in Pit F2 of Mound 10 (see below), the sherds from these bottom levels show little or no weathering compared with those from the levels above. It is probable that they were covered by wind-blown sand shortly after being deposited during a light occupation, and hence were not exposed to redeposition or weathering. Unfortunately, a separate detailed analysis of these early primary-deposit sherds was not made (but see Appendix for additional sampling, p. 84).

CERAMIC STRATIGRAPHY

On the basis of the sherds recovered, the principal deposit forming Mound 1 appears to be a deliberate Late Preclassic Crucero-phase accumulation. Underlying this a few Ocós-phase sherds found in the lowermost levels accompany a sherd complex paralleling the Cuadros and Jocotal phases. Sherds from these early phases (with apparently very few or no examples from the succeeding Conchas 1 phase) continue to appear as the dominant ceramic throughout the mound fill. But beginning at a depth of from 10 to 40 cm. above sterile soil, Conchas Orange sherds make their appearance everywhere tested under Mound 1 and continue in small numbers to the surface.

Conchas Orange pottery is the principal marker of both the Conchas 2 and Crucero phases at La Victoria.

In view of the unfortunate fact that the analysis of vessel shapes and decoration by level within types was not made at Altamira, nothing very precise can be said about the Mound 1 ceramic stratigraphy. The preva-
lence of earlier pottery characteristics in even the upper fill of the mound and the failure of the ceramic inventory as tabulated to the upper fill of the mound and the failure level of the Mound 1 areas tested, confined lence of earlier pottery characteristics in even factors. Mound 1 above the lowermost levels building activities. It is also hue, as just sug­

chronologically more meaningful varieties is culture-bearing fill earth in connection with very apparent, and might show significant culture history if done. The present analysis Preclassic periods.

 fragments. The accompanying chart (Table 4) shows the distribution of these fragments by level with the ceramic distribution chart (Table 2) shows that the occupation intensity centered in Levels 13 and 14. Sheer count might be erroneous, however, in judging quantity, since the volume could be much greater with a few large pieces than with many small ones. The adobe, therefore, was weighed in grams and the result included in the table. The very high weight for Level 17

| Table 3. Sherd Count, Mound 1, Pit N14-E14, Altamira |
|---|---|---|---|---|---|---|---|---|---|---|---|
| LEVELS | TOTALS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| BLACK | NUM | % |
| 1 | 0 | 0.00 | 6 | 40.00 | 4 | 26.67 | 10 | 6.67 | 0 | 0.00 | 10 | 6.67 | 0 | 0.00 | 15 | 1.67 |
| 2 | 4 | 16.00 | 8 | 32.00 | 0 | 0.00 | 2 | 8.00 | 2 | 8.00 | 0 | 0.00 | 5 | 2.09 | 25 | 4.22 |
| 3 | 2 | 4.17 | 5 | 62.50 | 5 | 62.50 | 1 | 2.00 | 1 | 2.00 | 0 | 0.00 | 12 | 2.04 | 10 | 4.22 |
| 4 | 6 | 5.27 | 7 | 41.23 | 27 | 23.69 | 9 | 7.00 | 0 | 0.00 | 10 | 8.76 | 9 | 7.00 | 3 | 2.64 |
| 5 | 11 | 7.61 | 21 | 46.43 | 13 | 11.90 | 2 | 1.42 | 7 | 4.97 | 7 | 4.97 | 3 | 2.13 | 3 | 1.42 |
| 6 | 12 | 26.67 | 16 | 35.56 | 7 | 15.66 | 1 | 2.23 | 0 | 0.00 | 5 | 11.22 | 1 | 2.23 | 2 | 4.44 |
| 7 | 11 | 11.35 | 46 | 46.43 | 11 | 11.35 | 9 | 9.00 | 2 | 2.07 | 11 | 11.35 | 4 | 4.13 | 2 | 2.07 |
| 8 | 8 | 25.00 | 8 | 25.00 | 13 | 31.58 | 4 | 4.13 | 6 | 6.67 | 3 | 6.67 | 3 | 6.67 | 1 | 1.00 |
| 9 | 11 | 11.11 | 5 | 83.33 | 3 | 3.33 | 4 | 2.00 | 0 | 0.00 | 1 | 1.00 | 2 | 2.00 | 1 | 1.00 |
| 10 | 19 | 22.90 | 3 | 33.33 | 11 | 11.36 | 6 | 6.67 | 2 | 2.00 | 1 | 1.00 | 2 | 2.00 | 1 | 1.00 |
| 11 | 11 | 11.11 | 43 | 40.19 | 23 | 21.50 | 7 | 6.80 | 6 | 5.00 | 1 | 0.94 | 2 | 2.00 | 0 | 0.00 |
| 12 | 11 | 14.29 | 38 | 46.66 | 11 | 14.29 | 3 | 3.00 | 2 | 2.60 | 7 | 9.10 | 3 | 3.90 | 1 | 1.30 |
| 13 | 13 | 20.55 | 12 | 27.27 | 12 | 27.27 | 1 | 2.28 | 1 | 2.28 | 3 | 6.02 | 1 | 2.28 | 0 | 0.00 |
| 14 | 4 | 6.97 | 5 | 33.33 | 4 | 26.67 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 1 | 6.67 | 1 | 6.67 |
| 15 | 0 | 0.00 | 2 | 20.00 | 1 | 10.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 6 | 0.53 |
| TOTALS | 152 | 13.44 | 479 | 42.95 | 221 | 19.56 | 88 | 7.76 | 20 | 1.77 | 86 | 7.61 | 44 | 3.89 | 23 | 2.04 |

| Table 4. Distribution of Adobe Fragments in Mound 1, Altamira |
|---|---|---|---|---|---|---|---|---|---|---|
| Level | 1-3 | 4-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 |
| 1 | 3 | 3 | 25.4 | 5 | 70.4 | 3 | 7.33 | 0 | 0.00 | 0 | 0.00 |
| 2 | 5 | 5 | 70.4 | 6 | 85.7 | 3 | 7.33 | 0 | 0.00 | 0 | 0.00 |
| 3 | 7 | 7 | 70.4 | 9 | 12.9 | 3 | 7.33 | 0 | 0.00 | 0 | 0.00 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 3 | 3 | 3 | 9.3 | 6 | 9.3 | 3 | 9.3 | 0 | 0.00 | 0 | 0.00 |
| 6 | 1 | 1 | 1 | 1.5 | 6 | 9.3 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 2 | 2 | 2 | 3 | 4 | 3 | 3 | 4 | 4 | 4 | 4 |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | 2 | 2 | 2 | 3 | 4 | 3 | 3 | 4 | 4 | 4 | 4 |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 16 | 2 | 2 | 2 | 3 | 4 | 3 | 3 | 4 | 4 | 4 | 4 |
| 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 19 | 2 | 2 | 2 | 3 | 4 | 3 | 3 | 4 | 4 | 4 | 4 |
| 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 32 | 34 | 156 | 106 | 15 | 223 |
was the result of a single piece much larger than any other specimen recovered. With this exception, the weight distribution varies little from the fragment-count pattern.

Of surely more significance than vertical distribution is the horizontal concentration of adobe fragments within the more elevated parts of the mound, particularly under the slight raise tested by Pit N1-E16 which produced 106 or almost half of the total sample. The two pits on the flat surrounding this elevation, on the other hand, produced only 15 and 16 lumps each. This does suggest that the low humps on Mound 1 are the more direct result of house construction and destruction.

Rough burnt adobe lumps were rather common at Altamira, being recovered from Mounds 1, and 6 through 10. Measurements of twig and branch impressions in this material were found to vary between .3 and 2.5 cm., with most centering around 1.0 to 1.5 cm. About 10 specimens had a flattened side as though from pressing against some flat surface. This surface was probably a flat base sherd, since one such example was found in Mound 6 with the adobe still adhering to the sherd. Assuming that the adobe was used in the construction of wattle-and-daub houses, the sherds might have been applied to the outside in certain exposed areas to reduce weathering during heavy rainfall. It is possible, of course, that the adobe debris represents something in addition to daub. It may, for example, be from banked clay forming the splash zone only at the base of cane walls, from pounded clay floors or thresholds, or even from clay fire dogs or hearths.

MOUND 2

Mound 2 lies 80 m. southwest of Mound 1. It is only about a meter high and has undergone some leveling although part of the humus zone remains. A single test pit was sunk to a depth of 1.5 m., the upper 1.11 m. of which contained cultural material. The stratigraphy of this mound is the same as that for the remainder of the site: plow zone, humus, tan clay, and presumably sandy clay or sand, although the excavation was not carried that deep.

The potsherds in Mound 2 concentrate in Levels 2 and 7 (Table 5), and represent an inventory similar to that of adjacent Mound 1. The scant occupation below Level 7 appears to be pre-Conchas. Adobe fragments were scattered throughout the pit, being most abundant in Level 6 which had 13 of the 28 pieces recovered.

MOUND 3

A single test pit was put into the projection termed Mound 3 which lies 150 m. south of Mound 1 and is an extension of the general Mound 1 elevation, here about 1 m. high. It was dug to 1.6 m. depth, of which the bottom 20 cm. were sterile. Only the south wall of the pit showed any irregularity, a looping lens of light mottled clay. Artifact content was low and there was no spectacular concentration in any one level. Sherds from the Late Preclassic were found mixed with earlier sherds as low as 1.3 m.

BURIAL

Burial 1 was discovered in the southeast wall of Pit N1-E9, at a depth of 1.50 m. The skeleton lay face up and extended with the shoulders lying on the east-west base line (Fig. 7). The pelvis was in too poor condition to make sex determination possible and the skull was missing except for a small fragment. Most of the vertebrae were also absent. This could have been a secondary inhumation, but more likely the incompleteness of the skeleton is due to decomposition and/or rodent disturbance. All levels below the burial were sterile, and no furniture accompanied it.

Figure 7. **BURIAL 1, ALTAMIRA**
In Section N1-E9, Mound 1.
Mounds 3 and 6 both produced Late Preclassic sherd types more abundantly than the others so far tested. These sherds are similar to the La Victoria Crucero types (Coe, 1961:84-86) which are related to Miraflores-Arenal types (coeval with the Chiapa Guanacaste and Horcones phases), but occurred mixed with earlier pottery. The Mound 3 pit produced only 191 sherds, including 24 assigned to the Crucero phase. Some of the latter were found in the deepest levels. This mixture of phase types is apparently due to building activities during Late Preclassic times, which brought in earlier sherd-bearing fill earth to enlarge the elevated occupation area from time to time.

MOUND 6

Mound 6 is located 150 m. southeast of Mound 1 and 80 m. east of Mound 3. The access road between the Peistal and Altamira ranches runs over its top, which has a very gentle slope. The eastern portion of the mound was in corn and abundantly covered with sherds. A test pit sunk in the northwest corner encountered sterile clay at 1.8 m. The profile shows no humus zone and the workmen reported that considerable leveling had taken place. Burials were found in Levels 16 and 17. As indicated in the discussion of Mound 3, it was apparent from the sherds coming out in the bottom levels, 16 and 17, that this mound also is of an entirely Late Preclassic date. Late Preclassic sherds were found in the lowermost levels, along with earlier types.

CERAMIC STRATIGRAPHY

The Altamira pottery types were not separated into chronologically significant varieties (see discussion above for Mound 1), and therefore there are no meaningful statistics for the Mound 6 fill sherds. Gross analysis of the sherds indicates that Mound 6 (with Mound 3)—and probably the entire southern portion of the general Mound 1 elevation—have resulted from an accumulation of occupation debris only slightly later than that of the northern portion and extending through the end of the Late Preclassic period. The low sherd count (173 rims) suggests that occupation was light and that a good part of the 1.7 m. of deposit here is the result of house platform construction. The Mound 6 test pit produced only 21 adobe fragments, concentrated in the upper levels, and it is probable that terracing or leveling fill accounts for more of the build-up than does actual building decay.

BURIALS

Burial 2 was found in Test Pit A of Mound 6 at 1.6 m. depth in the northeast wall. It was tightly flexed, in poor condition, and lay on its right side. Sherds of the Late Preclassic variety were found above and near the burial although none were in direct association.

Burial 3 was located in the south corner of the Mound 6 pit at 1.7 depth. It also was tightly flexed and most of the bones were missing, including the skull (Fig. 8). Both this and Burial 2 were adults, sex indeterminate.
MOUNDS 8 and 9

The backhoe was first put to use on Mound 8 where a single pit was dug into the face of the drainage canal. The pit was sterile from top to bottom and a quick reconnaissance on both sides of the canal showed only widely scattered sherds, so no further testing was done of Mound 8.

Mound 9 is a slight rise on the western edge of the lagoon opposite Mound 10 where there was a surface concentration of sherds. A ten-meter backhoe trench showed stratigraphy similar to that throughout the rest of the site, although the occupation zone proved to be shallower than in other areas (Fig. 9).

Two control pits, A and B, were also dug, 50 m. southeast and 5 m. east of the trench respectively. Test pit A was dug within a concentration of surface sherds, but became sterile after 60 cm. Test pit B produced only two additional levels, down to Level 8, but the total sherd quantity was greater. The mound as a whole was unproductive compared to other tested areas of the site.

The abundance of generally Jocotal phase Coarse sherds from the two test pits and backhoe trench and an unusually small quantity of Black sherds suggests that Mound 9 is a Jocotal deposit. Sherds from all levels are weathered and largely nondiagnostic.

MOUND 10

Six separate excavations were made in Mound 10. By far the largest was Backhoe Trench 1 which cut 95 meters long and 1 meter wide from east to west through the mound. It should be noted that the profile drawing of this trench (Fig. 10) has a dual scale: horizontally the scale is in meters whereas the vertical scale is in centimeters. Thus the incline of the bottom of the trench between 20 and 30 meters appears exaggerated.

A second backhoe trench was dug south from Trench 1 for 25 m. along the east side of the mound. It was begun 10 m. from the east end of Trench 1 and uncovered no distinctive features. Test pits A and B were placed on the east side of the mound also, where sherds were more thickly distributed on the surface. Pit A was dug near the top of the mound and Pit B down the eastern slope in order to obtain a controlled sample from the mottled clay zones apparent in the Trench 1 profile. Levels for all pits on this mound were arbitrarily taken from the highest point on the edge of each excavation.

Pits F-1 and F-2 were control pits put down in an area that showed darkened and burned soil as deep as 1.3 m. on the edges of Trench 1. Two profiles of Pit F-2 are shown in Figure 11.

The natural stratigraphy of Mound 10 as revealed by all cuts is again similar to the other mounds tested on the site. The mottled layers at the base of the mound slopes to east.
and west may represent erosion from the top, mixing tan clay and humus, or more probably may be the result of poor drainage which inhibited the leaching characteristic of better-drained zones. The sand is for the most part sterile. Sherd output along the western side of the mound was low compared with the eastern side. In the probe pit made between the 5 and 10 meter stakes at the bottom of the east-west backhoe trench (Fig. 12), a few sherds were still coming out as deep as 3.8 m. Water was coming in so fast at that depth, however, that it was impossible to continue. Probe pits between 15 and 20 meters and east of 35 meters were both sterile after the first 20 cm. of sand.

Test Trenches A and B were sunk out in the lagoon edge on the west side of Mound 10. They were dug to about 1.5 m. where sterile sand was encountered. Above the sand was 40 cm. of light mottled clay, 70 cm. of dark mottled clay, and 20 cm. of top soil. Only 3 sherds were recovered from A, and 8 from B, which suggests a light occupation for this low area. It is possible that all sherds were not gathered from the backhoe operation, but adobe fragments were also few in number as compared to those from the central mound pits, and it is quite possible that all this material is wash into a former borrow-pit zone.
CERAMIC STRATIGRAPHY

No analysis was made of the 3,000-plus sherds from Backhoe Trench 1 crossing Mound 10. A total of 477 rims from Pits A, B, F1, and F2 were tabulated according to the same rather amorphous types noted for Mound 1. There are a few things noteworthy about the resulting Mound 10 distribution. First is the general paucity of sherds in all levels and a completely sterile level 10 cm. from the bottom of the deposit in Pits A and F1, and two sterile levels 40 cm. from the bottom of Pit F2 (Table 6). A shallow sterile zone such as this within a deposit of very sparse overall cultural content may or may not be significant. Nevertheless, fill sherds from above the sterile zone tend to be very much weathered whereas those from beneath it are relatively uneroded. The substerile deposit, therefore, probably represents an undisturbed occupation preceding the concentrated build-up of the mound, paralleling the situation noted for Mound 1.

The presence of Conchas Orange sherds in the lower levels of Pit B (1 in Level 6 and 1 in Level 9) indicates that the apparently artificial accretion of Mound 10 above this point is within the Conchas 2 or Crucero phases. Pit B was stopped in the sterile zone below Level 9. Since the pit began at 60 cm. (6 levels) below the surface point of F2, this
Table 6. Sherd Count, Mound 10, Pit F-2, Altamira

<table>
<thead>
<tr>
<th>LEVELS</th>
<th>BLACK</th>
<th>GRAY</th>
<th>COARSE</th>
<th>CONCHAS</th>
<th>ORANGE</th>
<th>W-TO-BU</th>
<th>NEGROCUCO</th>
<th>COARSE</th>
<th>R-ON-BU</th>
<th>JIBALBA</th>
<th>GRAY</th>
<th>OTHER</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NUM %</td>
</tr>
<tr>
<td>1</td>
<td>-0 0.00</td>
<td>1.58</td>
</tr>
<tr>
<td>2</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>4 66.67</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>6 4.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 9.10</td>
<td>0 0.00</td>
<td>17 77.28</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>2 9.10</td>
<td>0 0.00</td>
<td>1 4.55</td>
<td>0 0.00</td>
<td>22 14.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>6 66.67</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>2 33.34</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>6 4.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>3 60.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 20.00</td>
<td>1 20.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>5 3.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 33.33</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 33.34</td>
<td>0 0.00</td>
<td>1 33.34</td>
<td>0 0.00</td>
<td>3 2.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2 66.67</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 33.34</td>
<td>0 0.00</td>
<td>3 2.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3 23.08</td>
<td>0 0.00</td>
<td>6 66.67</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 33.34</td>
<td>0 0.00</td>
<td>1 33.34</td>
<td>0 0.00</td>
<td>3 2.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5 19.23</td>
<td>4 15.39</td>
<td>11 42.31</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>2 7.70</td>
<td>1 3.85</td>
<td>2 7.70</td>
<td>1 3.85</td>
<td>26 17.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0 0.00</td>
<td>1 10.00</td>
<td>7 70.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>2 20.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>10 6.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 16.67</td>
<td>1 16.67</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>6 4.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1 16.67</td>
<td>1 16.67</td>
<td>2 33.34</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>6 4.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3 60.00</td>
<td>0 0.00</td>
<td>2 40.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>5 3.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>1 16.67</td>
<td>1 16.67</td>
<td>0 0.00</td>
<td>2 33.34</td>
<td>0 0.00</td>
<td>6 4.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0 0.00</td>
<td>3 42.86</td>
<td>1 14.29</td>
<td>0 0.00</td>
<td>2 28.57</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 14.29</td>
<td>7 4.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-0 0.00</td>
<td>0 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-0 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1 25.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>2 50.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 25.00</td>
<td>4 2.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 00.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1 5.00</td>
<td>3 17.65</td>
<td>3 29.62</td>
<td>0 0.00</td>
<td>4 23.53</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>4 23.53</td>
<td>0 0.00</td>
<td>17 11.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 00.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>0 0.00</td>
<td>1 0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>21 14.29</td>
<td>14 9.53</td>
<td>65 44.22</td>
<td>0 0.00</td>
<td>12 8.17</td>
<td>13 8.05</td>
<td>3 2.04</td>
<td>14 9.53</td>
<td>5 3.41</td>
<td>147 100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sterile zone is the same as that passed through by F2 in levels 16 and 17, as shown in Table 6. The absence of Conchas Orange in the F2 levels below the sterile zone and the presence of both White-to-buff and Jibalba Gray indicate that the original, apparently undisturbed occupation here is of the Jocotnal phase.

The unusually small sherd content and the complete absence of Conchas Orange in 3 of the 4 test pits suggest that Mound 10 is the result of a more intentional fill operation than others tested at Altamira. Its unusually uniform shape and the relatively sterile nature of the adjacent lagoon edge also support the conjecture that this is a deliberately constructed Late Preclassic platform built of largely earlier material scraped from adjacent areas.

A D O B E

In Mound 10 the distribution of adobe lumps is highest in levels 8 through 11 of Pit F2 with an hiatus in levels 17 and 18 and smaller quantities again in levels 19 through 21. Total examples for F2 are 306; F1, 37; Pit A, 10; and Pit B, 9.

MOUNDS 11 and 12

Surface indications on these two low elevations were sparse. The backhoe was used to dig 4 trenches in Mound 11 and 3 in Mound 12. In Mound 11 Trenches A and C were on higher ground and B and D on the slightly lower ground. They were cut on a north-south line, 5 m. in length, and roughly 20 m. apart. The wall profiles showed what is more or less standard stratigraphy for the site, i.e., top soil, tan clay, and sand in the center of the mounds, and top soil, humus, mottled clay, and sand on the lower ground. Of the three trenches dug in Mound 12 only one produced artifacts.

Only 82 apparently Jocotnal-phase sherds were recovered from the backhoe trenches and surfaces of Mounds 11 and 12, which seems to imply a dwindling occupation on the eastern edge of the site.
In studying the pottery of Altamira, close general similarities and detailed differences with the La Victoria material (Coe, 1961) soon became apparent. The following discussion is of a general nature and consists chiefly of comparisons with the La Victoria pottery. It is followed by a brief consideration of each ceramic type as identified at Altamira.

The almost total absence of the Ocós phase at Altamira has been noted previously. Furthermore, there are important differences between Altamira and La Victoria during the Conchas phase as well, especially in surface treatment of tecomates (neckless jars). Whereas at La Victoria there is a decrease during Conchas of such techniques as cord-marking and brushing, at Altamira surface alteration is the rule rather than the exception. Stria­tions at a slanting angle are common on the tecomate form, usually confined to a zone below the rim and above the body break. And there is a smoothed band just below the rim, and often one or two incised lines. This typical decoration configuration gives a clue to the almost certain pre-Conchas 1 date of most of the Altamira mound-fill sherds. Tecomates of this class seem to fit well the Suchiate Brushed Type of Salinas La Blanca being described as the characteristic type of the Jocotal phase (Coe and Flannery, 1967: III:30-32). This phase falls at the close of the Cuadros phase and both are intermediate between Ocós and Conchas. Other shape-deco­ration combinations at Altamira correspond similarly with these two Salinas La Blanca phases and explain their failure to make sig­nificant alignment with La Victoria, which lacked them.

CERAMIC TYPES

To avoid coining new type names for the Soconusco coast pottery, we preferred to adopt the La Victoria typology, as it seemed to correspond closely to the Chiapas site complex. But the largely one-to-one correlation proved to be impossible as a result of the circumstance that Altamira pottery is not, in fact, well represented at La Victoria due to the largely different periods of occupation now apparent for the two sites. On the other hand, much of this Altamira pottery is well represented at Salinas La Blanca, where excavations have emphasized the spotty and in­termittent nature of the Pacific Coast Pre­classic occupation pattern. Salinas La Blanca has no Ocós nor Conchas complexes, and La Victoria no Cuadros nor Jocotal, for example. Altamira experienced little discovered Ocós­phase occupation (though a few distinctive sherds suggest more ample presence of the complex somewhere at the site—see follow­ing pages and Appendix), but did have a widespread though shallow occupation begin­ning in Cuadros, apparently, but principally during Jocotal. This earlier refuse then served as house platform fill for the succeeding and much later Crucero occupation. Un­fortunately, the small pits and gross artifact analysis characteristic of the 1963 excavations nowhere produced statistically valid ceramic stratigraphy. All of the pottery described in this section is chronologically undistinguished except by incomplete external comparison.

Early Preclassic

The La Victoria pottery type categories utilized below, despite shortcomings noted previously, do suffice to give an understand­ing of the rather limited range of most of the Altamira pottery and its closeness to the Early Preclassic complexes recently iden­tified nearby in Guatemala. Stratigraphic dis­tinctions of the Chiapas components of this early pottery province and their more exact relationships to those east of the Suchiate River in Guatemala will be made available by the forthcoming study of the Izapa Pre­classic ceramic sequence (S. Ekholm, in pre­paration). Both this study and a recent recon­naissance of the Chiapas Soconusco coast (Navarrete, in preparation) will trace develop­ment and distribution of pottery types, co­ordinated so far as possible with the pending Salinas La Blanca typology which was not available for the Altamira analysis (see also Appendix and Discussion).

Pottery drawings are reproduced at one­fourth scale.

BLACK
(PAMPAS BLACK-AND-WHITE AND GUAMUCHAL BRUSHED—SEE APPENDIX)
(Figs. 13, 14)

Technology: Dark cores are the rule at Altamira and brown cores are present but
fewer. The "fish-scale" effect was noted on a few sherds, but the majority have no such characteristic. Besides crystal ash inclusions the Altamira sherds contain some angular quartz and a small amount of biotite. The former seemingly is not natural to the clay and is more abundant than the ash. They are generally combined but a few sherds have only one or the other. The biotite seems certainly a part of the original clay.

Shape: Shapes generally conform to the La Victoria description (ibid.:70-73), though flaring-side bowls with poorly finished exteriors are more typical of the Cuadros and Jocotal phases at Salinas La Blanca. Shapes typical of Cuadros are some of the heavy neckless jars and bowls and dishes with thickened rims. Sometimes the thickened rims were applied as a separate strip of clay; several such rim reinforcements were found independent of the vessel to which they had been attached. Neither composite-silhouette nor cuspidor bowls were identified for this type at Altamira. The flaring-side dish was by far the most popular shape, followed by tecomates, with bowls and jars composing a very small percentage.

One probably Ocós-phase sherd of this type was found. It comes from Mound 1, N1-
El6; the shape is of a tecomate and there is no surface alteration. A red wash covers part of the surface.

Decoration: Flaring-side dishes are usually undecorated except for occasional double incised lines and frequently the white-rim-black effect. This appears to be the Pampas Black-and-white type established for the Cuadros and Jocotal phases at Salinas La Blanca (see Appendix, page 108). Only a single specimen has excised areas filled with red paint (Fig. 13, b), a trait common in the 1965 sample (Fig. 80). Tecomates usually have two grooved lines below the rim (Fig. 13, f) with a decorated zone just below the second line and above the body break. Slanting striations are the most popular decoration, with cord impressing and stick or fingernail punctations added in slanting lines. Occasionally an entire vessel is smoothed and burnished, and some have a red wash applied to the rim. Bowls and jars are generally plain although a few bowls have incised lines in simple geometric patterns.

Technology: Generally crystal ash is the main inclusion but some sand and iron oxide

Figure 15. GRAY TECOMATE, ALTAMIRA
Mound 10, Backhoe Trench 1.

Figure 16. GRAY POTTERY, ALTAMIRA

a: Mound 1, N1-E16, L-5. b: Mound 10, Backhoe Trench 1, 20-25 m. c: Mound 1, N14-E14, L-5. d: Mound 1, W5-S1, L-15. e: Mound 1, N14-E14, L-10. f: Mound 1, N1-E16, L-11. g: Mound 1, N1-E16, L-13. h: Mound 1, N1-E1, L-18.
Figure 17. Gray Sherd Profiles, Altamira

are found in a few examples and may be indigenous to the paste, though angular quartz grains in some instances may be an additive. Biotite encountered occasionally is natural to the clay.

Shape: All shapes typical of the Early Preclassic, including tecomates and an abundance of flaring-side dishes which are the most popular shape in the type; these are generally rough and unslipped on the exterior and pertain to the Cuadros-Jocotal phases. Five sherds of small thin-wall plain tecomates suggesting the Ocós phase were found in the lower levels of Mound 1.

Decoration: Most of the sherds in this type are plain except for the tecomates which usually have simple striations below the rim. Flaring-side dishes sometimes have two horizontal incised lines below the rim, very rarely with the double-line break. Jars and bowls are mostly plain with occasional incised lines near the rim.

COARSE
(SUCHIATE BRUSHED, MENDEZ AND MAPACHE RED RIM, SILTEPEC WHITE—SEE APPENDIX)
(Figs. 18-21)

Technology: Similar to La Victoria (Coe, 1961:49) with paste containing crystal ash and in some instances beach sand, carbonaceous material, and iron oxide. Dark cores are absent from Victoria Coarse at La Victoria, but at Altamira a large number of sherds that resemble Victoria Coarse in all other respects have dark cores. They therefore were separated out in the initial sorting and are listed below as Negrusco Coarse.

It should be pointed out that weathering (especially in the upper levels of excavations) may have altered the surfaces of sherds of several types sufficiently to result in their classification as Coarse ware. The quantities of Coarse pottery listed in the sherd tables therefore are rather meaningless, as it was impossible to separate the Coarse wares from other eroded types on the basis of paste composition alone.

Shape: The flaring-side dish is most common, followed by tecomates, simple-silhouetted bowls, collared jars, necked jars, and pottery stools.

Decoration: The bowls, jars, and "stools" are usually plain although some tecomates have striations (Fig. 19, d) and some have handles (Fig. 19, e-g). A very few sherds have a red wash on the rim (Fig. 19, a, b) and occasionally one or more incised lines below the rim (Fig. 19, a-c).

Comment: It is now stated (CF, 1967:21, 26) that Victoria Coarse at La Victoria "was not a type at all, but rather a 'residual category' into which a number of unrelated coarse types ... were lumped." Some of the legitimate constituent types within this coarse ware grouping are described as separate types in the Appendix.
Figure 18. COARSE POTTERY, ALTAMIRA

a, c: Mound 10, Backhoe Trench 1, 20-25 m. b: Mound 10, Backhoe Trench 2, 0-5 m. d: Mound 9, Test Pit B, L-4.

NEGRUSCO COarse
(Fig. 22)
Technology: Distinguished from the preceding by the dark core. The paste also tends to be friable and soft although a few harder sherds are included.
Shape: Same as preceding.
Decoration: Plain with occasional striations on tecomates.

Figure 19. COARSE TECOMATES, ALTAMIRA

a: Mound 1, N1-E1, L-11. b: Mound 1, W5-S1, L-12. c: Mound 1, W5-S1, L-14. d: Mound 6, Test Pit A, L-12. e: Mound 6, Test Pit A, L-6. f: Mound 10, Test Pit F-2, L-9. g: Mound 10, Backhoe Trench 2, 0-5 m.
Figure 20. Coarse Pottery Stools, Altamira
Mound 10, Backhoe Trench 1.

Figure 21. Coarse Sherd Profiles

Figure 22. Negrusco Coarse Pottery, Altamira
a, c: Mound 10, Backhoe Trench 2, 0-5 m. c: Mound 10, Surface (the pock marks on this sherd are the result of weathering). b, d, f, g, h, i: Misc. sherd profiles.
single sherd has an eccentric rim tab (Fig. 23, e).

RED-on-BUFF
(XQUIC RED—SEE APPENDIX)
(Fig. 25)

Technology: Under the microscope small quantities of sand were noted in some sherds together with the crystal ash. There are also some orange pastes along with the buff and pale brown. Dark cores are present.

Shape: Tecomates, collared jars, dishes with outflaring sides, necked jars, and bowls.

WHITE-to-BUFF
(TACANA INCISED WHITE—SEE APPENDIX)
(Figs. 23, 24)

Technology: The principal inclusion is a uniformly fine crystal ash. A fine iron oxide sand is also present. The paste is generally buff all the way through but a few sherds have gray cores. The slip on the majority of the sherds has been partially weathered off.

Shape: Necked jars, dishes with outflaring sides, and simple-silhouette bowls. Tripod grater bowls which are fairly common at La Victoria were suggested at Altamira by a single foot (Fig. 24).

Decoration: Most sherds of bowls and dishes have incised pre- or post-slip lines. A
Decoration: The red slip sometimes covers both or all of a single surface, and at other times is zoned (Fig. 25, d) or confined to a red band at the rim. Incised lines, both broad and narrow, singly or in combination, are a common element on flaring-side dishes. Teconmates have one or two grooves below the rim and are generally burnished. Flat bases are slipped only on the interior and have some geometric incised designs (Fig. 25, l).

CONCHAS RED-and-WHITE

Technology: Crystal ash is the only inclusion with no pumice, but other aspects seem to conform to the La Victoria and Salinas La Blanca types (CF:41).

Shape: Of 14 sherds all but three are from flaring-side dishes; exceptions are one bowl and two necked jars.

Decoration: At La Victoria the red slip seems never to have been applied over the white, but on at least four of the sherds from Altamira this was done. A single sherd has a grooved line separating the red and white zones, and another has double incised lines below the rim.

CONCHAS RED UNBURNISHED

Technology: All the few Altamira sherds recovered contain very fine crystal ash but none of them have dark cores as at La Victoria. A white slip was applied to the interior of a flaring-side dish and to the exterior of one of the bowls.

Shape: Identified were sherds of four bowls and of two flaring-side dishes.

Decoration: Three examples of single incised line around the exterior and three of incised geometric designs were noted.

OCOS SPECULAR RED

Only two small sherds of this Ocós-phase type were found in the 1963 excavations (others were found in 1965—see Appendix), both in Mound 1, Level 16, Pits N1-E1 and N1-E16. One is of a thin-wall neckless jar with a single preslip groove just below the rim, the other of a beveled-rim bowl.

OCOS BUFF

Eight sherd of this Ocós-phase type were identified. Seven came from Mound 1, all in or below Level 13, and a single sherd is from Mound 10, Pit F-1, Level 14. Six sherds are from thin-wall neckless jars or teconmates, one is from a dish with outflaring sides, and one a gadrooned bowl (Fig. 26) with the rim turned in somewhat more than those figured by Coe (1961:Fig 21, f, g).

Figure 26. Ocós Buff Sherd, Altamira
Mound 1, W5-S1, L-14.

Figure 27. Ocós Buff Sherd, Altamira
Mound 1, W5-S1, L-14.

JIBALBA GRAY

(CULEBRA GRAY—SEE APPENDIX)

(Fig. 27)

Technology: The inclusions are generally much finer than those in other types. Sherds with thin walls (4 to 6 mm.) contain a very fine crystal ash that is not detectable with
the naked eye. Sherds with thicker walls have a barely visible ash. The thin pieces are well fired and very compact. Some of the thicker sherds also are well fired but seem sandy and break easily. The color ranges through dark to light gray with some bluish grays. Surface color has the same range as the paste except for a few sherds which have a white slip. The inside surfaces of dishes are always slipped, the outside occasionally.

Shape: The flaring-side dish is most abundant, followed by simple-silhouette bowls. Both small and tall-neck jars are present in small numbers. Four tecomate and three pottery stool fragments are included.

Decoration: Only eight sherds of the total 180 are decorated, with incised or, in one case, excised (Fig. 27, a) lines confined to necked jars, bowls, and flaring-side dishes.

Comment: Sherds of this type were not found at La Victoria but some do seem very similar to Ocós Gray of the Jocotal phase at Salinas La Blanca (Coe and Flannery, 1967: 46). There is also a close similarity to early sherds of Vergel White-to-buff (see following section on Padre Piedra) from Chiapa de Corzo.

Late Preclassic

CONCHAS ORANGE
(LATE CRUCERO RED-ON-ORANGE—SEE APPENDIX)
(Fig. 28)

Technology: Virtually identical to La Victoria except that together with crystal ash the Altamira sherds contain small amounts of iron oxide.

Shape: Most shapes listed by Coe (1961:84-86) for Crucero. These include small neckless jars, dishes with labial ridges, wide-everted rims, or outflaring sides, bowls with beveled rims, deep bowls, and composite-silhouette bowls. For additional shapes typical of the Crucero phase found in the 1965 trench into Mound 1, see Appendix.

Decoration: Restricted to incised lines and grooving, the latter mainly on the upper surfaces of wide-everted rim dishes (Fig. 28, g), and around the rims of flaring-side dishes. Incised lines appear in geometric patterns on the exterior of bowls, the most complex example of which is illustrated in Figure 28, b.

Comment: Conchas Orange at La Victoria is confined to the Conchas 2 and Crucero phases (ibid.:76-79, 84-85), and at Altamira appears to be typically Crucero, though it
occurred in all but the lowermost few levels in most mound excavations.

MISCELLANEOUS LATE PRECLASSIC CHARACTERISTICS

(Fig. 29)

The terminal Late Preclassic Crucero-phase pottery types were being redefined as this was written (Coe and Flannery, 1967:47) and it has not been advisable to anticipate that redefinition by applying type names to the small Altamira collection of that phase. Accordingly the Crucero-like pottery from Altamira Mounds 3 and 6 is described below in terms of shape and decoration only (characteristics apply both to the Conchas Orange type described above and to other orange, red, brown, and black types). As a rule this pottery is well made and well fired; occasionally there are fire clouds of varied coloration. The sherds are hard and the slip seems well applied. The inclusions in the clay are uniformly crystal ash, sometimes extremely fine.

Wide-everted-rim Bowls and Dishes (Fig. 29,a, b, i at left). Monochrome colors include orange-brown, dark brown, orange, and light brown. Some examples are a sort of bichrome in the red range and some suggest the "Cloudy Usulutan" or "accidental resist" technique. The exteriors of some sherds feel satiny or waxy. Similar examples were found at Mirador with slight variation in rim protuberances and incising (Peterson, 1963:Figs. 16, e; 36, b-d). The Uaxactun ceramic report includes some Chicanel examples which are similar (Smith, 1955:Fig. 10).

Narrow-everted-rim Bowls and Tripod Dishes (Fig. 29, c, d). Transitional between outcurved, thickened, and wide-everted-rim bowls with resemblances to Mirador (Peterson, 1963:35; Fig. 37, f, m).

Composite-Silhouette Bowls. Yellowish-red vessel with rim incurving slightly from the shoulder (Fig. 29, f). The rim has two concentric grooves below the lip. Mirador V sherds include two similar examples (Peterson, 1963: Figs. 49, b; 51).

Simple Bowls with Decorated Rim. Bowls with incised lines or grooves directly below the rim (Fig. 29, g). Similar to examples from La Victoria (Coe, 1961:Fig. 36, q, t).

Deep Jars. Thickened rim and shoulder, the latter with a concentric groove (Fig. 29, h). A rather similar example noted at Mirador (Peterson, 1963:Fig. 87, a).

Tall Bowls with Flaring Wall and Short Vertical Rim. Two grooves just above the body break (Fig. 29, j). Examples from Mirador are similar (Peterson, 1963:Fig. 60, d-g).

Medial flanges. Eroded and coarse, these light red examples are probably from storage jars (Fig. 29, k).
Decorative techniques: One sherd of a nubbin tripod vessel floor is decorated with undulating incised lines (Fig. 29, d). Similar designs on vessel bottoms were found at Mirador (Peterson 1963:Fig. 21). On the upper surfaces of wide-everted rims incising occurs usually as two or three parallel lines. Shallow grooves run around the outside of some bowls just below the rim. A single sherd has simple incised geometric patterns. One wide-everted rim sherd has large double modeled protuberances on the lip (Fig. 29, a). Two others, one a wide-everted rim and the other a plain bowl, have smaller protuberances.

CLAY FIGURINES
(Figs. 30-33)

In general the clay figurines from Altamira seem much like those described for the Ocós and Conchas phases at La Victoria (Coe, 1961:92-93). However, the Altamira eye treatment is rather distinctive. The pin-point or tiny vertical slit type of punching for denoting the pupil indicates that most of the Altamira solid figurine heads are pre-Conchas in date and causes them to stand apart from the bulk of La Victoria figurines; they clearly conform more closely to the Ocós standard than to Conchas and seem to have originated in the intermediate Early Preclassic Cuadros and Jocotal phases (see Appendix).

HOLLOW HEADS

Large hollow figurine fragments were scarce, only two small examples being found at Altamira. One has a thick coat of red paint adhering to the chin and cheek (Fig. 30, c) but none show ear-spool; quite dissimilar hollow head fragments were recovered from the Conchas phase at La Victoria (Coe, 1961: Fig. 54, h). Figure 30, a, b shows other hollow Altamira types.

SOLID HEADS

A general description of each solid Altamira figurine head is given in the subcaptions to Figures 31 and 32. Specimens from Altamira do not resemble the La Victoria solid types, lacking the deep pupils and the ear-spool so characteristic of figurines from the latter site. And several of the Altamira examples, such as the very Olmec-style heads in Figure 31, are quite dissimilar to anything found at the Guatemalan site.

SOLID TORSOS

Clay figurine torsos and limbs recovered from Altamira generally conform to the description for the La Victoria fragments (Coe, 1961:97), and a representative selection is depicted herein as Figure 33. General characteristics include toes and fingers represented by parallel incised lines, fat thighs and legs tapering to slender calves, genitals never indicated but small breasts often shown, and navel always prominent. At least two specimens had one hand placed on the abdomen (Fig. 33, b, f).
Figure 32. SOLID FIGURINE HEADS, ALTAMIRA

a: Reddish yellow; Mound 1, N14-E14, Level 10. b: Reddish yellow to gray, traces of red wash paint; Md. 1, W5-S1, L-6. c: Eroded, pale brown, traces of red paint on cheek; Md. 1, W5-S1, L-15. d: Pale brown with appliqué features including hair or headdress intact only on right side, red paint on neck and ears; Md. 10, TP B, L-3. e: Light gray to reddish brown with iron-oxide granules; Md. 1, N14-E14, L-10. f: Yellowish brown to gray; Md. 1, N1-E1, L-19. g: Poorly fired clay; Md. 1, W5-S1, L-13. h: Solid eroded, reddish yellow; Md. 10, TP B, L-9. i: Light gray to brown; Md. 1, N14-E14, L-12. j: Light brown with red wash on left side of face; Md. 1, N14-E14, L-9. k: Brown with red wash on face; Md. 1, N14-E14, L-8. l: Well-slipped brown, red paint under left eye; Md. 10, TP B, L-9. m: Light brown with red paint on left side; Md. 10, TP F2, L-12. n: Gray with red wash on back; Md. 10, Trench 1. o: Eroded reddish-brown; Md. 10, Trench 1. p: Light gray; from drainage canal northwest of Altamira mound group, 35 cm. below surface level of field. Scale ½.
Figure 33. Figurine Torsos and Limbs, Altamira

ALTAMIRA ARTIFACTS

STONE ARTIFACTS

The natural soil of Altamira is a fine silt, with no native stone apparent anywhere. Rocks are found only on the surfaces of the low mounds where they were brought by man. Of 275 stone fragments recovered from excavations in these mounds, about half could be classified as artifacts; the remainder seem to be refuse. Of the artifacts, 44% are of dacite and 32% of quartz latite, both fine-grained igneous rocks differing only in their quartz and feldspar content. The only non-igneous rock represented by the artifacts is quartzite. The sources of these raw materials were not determined, but the stone probably was brought in from short distances, perhaps from the intrusive rock outcrops of the nearby mountains but more likely from stream beds of the numerous rivers draining them. Raw material for the few obsidian objects had a more distant source, probably Guatemala.

The Altamira stone artifacts were not useful in clarifying chronological problems since they came largely from undifferentiated mound fill. Although Coe (1961) describes some stone artifacts of La Victoria as being chronologically significant, it is rarely possible to be dogmatic about these usually very conservative tool forms. In the following description of the unique as well as the more typical Altamira specimens close parallels at related sites have been indicated where most obvious only.

Stone implement drawings are reproduced at one-fourth scale, unless otherwise indicated.

Chipped-Stone Implements

PROJECTILE POINTS

Obsidian Projectile Point (Fig. 34, a). Laurel leaf in shape, made from a large flake. One side shows large oblique chips and the other smaller flakes; both edges have been retouched. The base has a marked side notch on one side but only slight indentation on the other. The black obsidian is slightly banded and almost transparent when held up to the light.

A surface find, this point is not assignable to any cultural phase at Altamira. No other points were found. Leaf-shaped points of similar size but less finely flaked were found by Wauchope at Zacualpa (1948:Pl. 23, k-u).

SCRAPERS

Reused Obsidian Scraper (Fig. 34, b). May have been a knife, broken either during manufacture or later. Initial chipping removed broad flakes on both sides and the upper part was retouched by finer flaking.

Prismatic Blades (Fig. 34, c). Long flake blades struck off from a polyhedral core. These may have been knives but, with both edges worn or retouched, a use in sawing or scraping seems more probable.

Compare Coe, 1961:Fig. 60, k (Conchas phase); MacNeish and Peterson, 1962:Pl. 3, a, c, d, f; and Wauchope, 1948:Pl. 24, p.

Obsidian Flake Scraper (Fig. 34, d). Ranging in size from 2.5 x 2.7 to 4 x 1.6 cm., these scrapers were made from large translucent black obsidian flakes. One edge shows retouching or wear. Four examples were found, with the following proveniences: Mound 1, N1-E16, Level 11; 1-N14-E14-5; 1-N14-E14-15; and 3-TPA-5.

Compare MacNeish and Peterson, 1962:Pl. 4, b, and Coe, 1961:Fig. 51, k (Ocos phase).

Obsidian Thumbnail Scraper (Fig. 34, e). Almost square, chipped on both sides and
worked on all four edges. One corner is trimmed down to a fine cutting point, both edges of which are retouched by fine pressure flaking. The obsidian is black, translucent, banded.

Compare Coe, 1961:Fig. 60, 1 (Conchas phase).

Ground-Stone Utensils

STONE BOWLS

(Fig. 35)

Squarish Dacite Bowl Fragment (Fig. 35, a).
Bowl with thick rim, well polished inside and somewhat rougher outside. There is a pecked groove 1.7 cm. below exterior rim. The walls slope uniformly and rather sharply around the specimen. This is the only Altamira example that can be called a bowl without considerable doubt.

Compare Coe, 1961:101, Fig. 42, f (Conchas phase); Dixon, 1959:Fig. 53, f (Cotorra phase).

Round Dacite Bowl or Mortar Fragment (Fig. 35, b). Smooth inside, rough outside, with approximate diameter of 35 cm.

Compare Coe, 1961:Fig. 41, b (Ocós phase).

METATES

(Fig. 36)

Thirty metate fragments were recovered from the mound excavations, primarily from Mound 1. Typical examples are illustrated and described.

Shallow Dacite Fragment (Fig. 36, a). Finely smoothed outside, less smooth inside. The outside rounds to a flat bottom. Very hard, compact and heavy, and reflects long usage.

Quartz Latite Fragment (Fig. 36, b). Smoothed outside and inside, with thickness diminishing toward the center.

![Figure 36. Metate Fragments, Altamira](image-url)

Figure 36. Metate Fragments, Altamira

a: Dark gray dacite; Mound 1, N5-E14, Level 18. b: reddish-brown latite; Mound 10, TP A, Level 3. c: Gray dacite; Mound 1, N1-E9, Level 19. d: Light gray latite; Mound 10, TP F2, Level 7. e: Light gray latite; Mound 9, TP A, Level 3.
Heavy Dacite Fragment (Fig. 36, c). Upper surface smoothed from usage but with very little concavity.

Compare Coe, 1961: Fig. 41, f, g (Ocós phase) for similar thick milling stones practically lacking depressed surfaces.

Quartz Latite Fragment (Fig. 36, d). Smooth on the inside but very rough on the outside. Thickness is uniform except for a slight tapering of the rim.

Compare Coe, 1961: Fig. 43, d (Conchas phase).

Heavy Quartz Latite Fragment (Fig. 36, e). Smoothed on all unbroken surfaces, with very slight concavity as grinding surface (compare with Fig. 36, c, described above).

MANOS OR HAND STONES

(Figs. 37, 38)

Ovoid Manos

Dacite Mano Fragment (Fig. 37, a). Somewhat rough except on the flattened grinding area. Possibly a water-worn pebble.

Compare Coe, 1961: Fig. 42, d; 51, n (Ocós phase).

Basalt Hand-stone Fragment (Fig. 37, b). Very smooth and may be stream rock; one slightly flat surface was probably used for grinding.

Compare Coe, 1961: Fig. 51, o (Ocós phase).

Andesite Mano (Fig. 37, c). Well-flattened grinding surface.

Oblong Manos

Forty mano fragments were recovered during the mound investigations, the majority from the Mound 1 pits. They are typified by the examples described and pictured.

Reused Dacite Mano Fragments (Fig. 38, a-c). Well polished, with rounded, roughened ends having been used as hammers. The flat grinding area on a is unusually worn.

Quartz Latite Fragment (Fig. 38, d). Somewhat flattened with the end rounded and polished.
Compare Coe, 1961: Fig. 43, b (Conchas phase).

Complete Mano (Fig. 38, e). Well polished, from backhoe trench. This is the only whole example from Altamira. Period unknown but probably relatively late.

HAMMERSTONES

(Fig. 39)

Granite Fragment (Fig. 39, a). Surface well polished, ovoid to round cross-section. The unbroken end has been used as a hammer. One of rare granite artifacts at Altamira.

Flattish Dacite Fragment (Fig. 39, b). Circular, with unbroken edges evidencing use as hammer. May have been used to break up red ochre, as flakes of this substance are abundant on its surface.

Dacite Fragment (Fig. 39, c). The unbroken end is much worn as if from hammering. Its surface still contains fragments of red ochre, suggesting use in preparing pigment.

CELT

Dacite Celt Fragment (Fig. 40, a). Highly polished, from backhoe trench. Period unknown, but probably relatively late.

MAUL

Rhyolite Maul Fragment (Fig. 40, b). Fine-grained rock, well polished, with a full groove for hafting. The extremities are missing but object does not appear to have been an ax and its use as a battering tool seems more probable.

Coe (1961:107) reports two types of axes from the Conchas 2 subphase at La Victoria, a grooved and a flake example, but mauls are unrepresented among the objects found there.

ANVIL

Dacite Anvil Fragment (Fig. 40, c). Well polished, especially on inner shoulders. The centers of flattened areas are depressed due to pecking. The surface is reddish in places, suggesting that the object was used as an anvil for breaking up red ochre (as suggested above for hammerstones).

Compare Coe, 1961: Fig. 51, m, a Conchas mano fragment which had been used as an anvil.
PESTLE

Dacite Pestle Fragment (Fig. 40, d). Surface smoothed but not flattened to indicate use as a mano. Slight tapering gives appearance of a pestle top.

Compare Coe, 1961:Figs. 51, p; 60, m.

POLISHING STONES

Andesite Pebble Polisher (Fig. 40, e). Flat stream-pebble which may have been used to polish pottery or as a light hammerstone. It also may have been a gaming piece. Two very similar stones were found that show no working. Such stones are not native to the immediate area.

Slate Smoother (Fig. 40, f). Carved on the thicker end and smoothed over entire surface, where there are traces of what appears to be polished clay. Object may have been a pottery smoother.

BONE ARTIFACTS

Only two pieces of bone from Altamira show signs of having been worked and both of these were found in Mound 1, N14-E14. The first, a small piece of long bone (Fig. 41, a), was found in Level 7. It is too blunt and too short to have been used as an awl but may have been a smoothing or polishing tool. Its well-smoothed surface has several scratches running with the diameter. The second bone artifact is from Level 12 and appears to be an ear-spool made of a fish vertebra (Fig. 41, b). Opposite sides of the object show wear.

Figure 41. Bone Artifacts, Altamira
a: Worked long bone. b: Ear-spool of fish vertebra.

FAUNAL REMAINS

A total of 87 unworked bone fragments were found at Altamira, the majority from unidentified small mammals. Almost all (81) came from Mound 1, with 5 from Mound 6 and 1 from Mound 3. Twenty-eight pieces of flat mammal bone appeared to be from cranium, scapula, or pelvis, and half were partly burned. Eleven of the 30 long-bone fragments showed signs of burning. Except for 5 phalanges, probably of deer, the remainder of the bones seemed unidentifiable, but five were burned. The Altamira data clearly indicate that small animals, including rodents, were a food source, just as they were at La Victoria (Coe, 1961:12, 141).
CONCLUSIONS

Brief preliminary investigation indicates that Altamira was occupied only during the Early Preclassic and the late part of the Late Preclassic, a non-continuous settlement extending over the years 1,500 to 100 B.C. This occupation was spotty rather than uniform; certain areas of the site were favored more than others during particular phases.

The earliest and generally sparse occupation that underlies most of Altamira seems to have begun during Ocós times. The following one paralleled the Cuadros and Jocotal phases of Salinas La Blanca and just possibly the Conchas 1 subphase of La Victoria. Some further light on these occupations was shed by the 1965 pits of Lowe as described in the Appendix and commented upon in the Discussion. The major and most widespread occupation seems to have been during the late part of the Early Preclassic, generally corresponding to the Jocotal phase at Salinas La Blanca as well as to part of the Cotorra phase at Chiapa de Corzo (Chart 1). Well after this time certain areas began to build up through house platform construction and the redeposition of refuse, resulting in the formation of most of the low mounds now at the site. Possibly, some pottery types survived up to this period with little change in general ware characteristics from preceding occupations, but the appearance of the outstanding late variety of Conchas Orange marks the Late Preclassic period of this constructional stage in repeated instances.

Evidence for a diverse economy such as that indicated for La Victoria (Coe, 1961:116) was simply not found at Altamira. The data so far recovered point to a strong agricultural base with some hunting and fishing practiced. The difference between the two sites is probably a simple ecological one. Altamira was a more inland site not located along an estuary as was La Victoria. Marine products seem to have been little utilized despite relative closeness to the sea. For possible cultural interpretations, the reader is referred to the reconstruction of the Conchas phase at La Victoria (ibid.:116-119), where a greater recovery of significant data better justified such interpretative efforts.
II. EXCAVATIONS AT PADRE PIEDRA

INTRODUCTION

Padre Piedra lies on the eastern edge of the Frailesca region, near the small San Miguel River, a tributary of El Dorado River which flows northward to the Grijalva. The initial reconnaissance of the archaeological site was made in 1953 by Sorenson (1956) who noted the Olmec style of the stone monument from which the site takes its name (hereafter called Monument 1, Fig. 42). A series of small test pits were dug near the sculpture at Padre Piedra by Navarrete in 1959; his report clearly showed the early Preclassic nature of the site even though the deposits sampled were either shallow or sterile (1960:10-12).

The ecological background for the general Central Depression of Chiapas can be found in Lowe (1959:4-8) and specifically for the Frailesca Region and Padre Piedra in Navarrete (op. cit.:2, 10). The latter failed to mention, however, that the site is located along a much eroded bluff (see aerial photo, Fig. 43). Our survey along the upper face of this bluff extending in a long arc around the Padre Piedra Finca located various areas of concentrated occupation, in one instance associated with what appeared to be aboriginal stone house foundation lines (see site plan, Fig. 44). Little cultural material was found in the plowed fields below the bluff except that which appears to have eroded from above. Approximately 100 m. north of the bluff is a former course of the San Miguel River, still swampy in places. Apparently the aboriginal

Figure 42. Monument 1, Padre Piedra

The sculpture from which the site derives its name. a: Looking northeast, with Trenches I and II at upper left. b: Closer view of figure. (See Navarrete, 1960, Fig. 11, for drawing.)
settlement on the bluff was living quarters, with the lower, more moist and fertile land along the river reserved for agriculture.

Monument 1 lay fallen in place at the edge of the bluff, overlooking the low land to the north. We had hoped to relate this Olmec-appearing monument to some definite sherd assemblage or other cultural feature. But the stela lay in a large pit, obviously no longer directly associated with any ancient context (Fig. 42, a). Part of this excavation had been dug in a recent attempt to move the stone to the town of Villaflores, enlarging an earlier test trench made around the monument by Navarrete, who had also taken advantage of a then existing pot-hunter’s pit (op. cit.:11).
Figure 44. Map of the Padre Piedra Archeological Site
EXCAVATIONS

Considering the disturbed situation around Monument 1 and the known shallowness of the cultural deposit in its vicinity (ibid.), Trenches I and II were laid out running from the old pit to the bluff edge, at right angles to each other, in an attempt to determine possible horizontal relationships thereto. These trenches produced little of consequence with no evidence of construction or habitation levels. Significantly, however, the relatively scarce sherd sample was almost entirely Early and Middle Preclassic in date, though its scantiness and shallow occurrence prevented meaningful conclusions. In a search for deeper deposits, therefore, an additional two trenches (III and IV) were made in the bluff slope, and Trench V was dug across the base of a peninsular area of the bluff farther east. For location of trenches see site plan, Figure 44. This site map was drawn by Eduardo Martínez E. on the basis of a rapid plane-table survey.

All trenches were dug in artificial levels of 10 cm., although each varied in length, width and purpose. Only the Trench V area had been disturbed recently by plowing since it was the only one that extended any distance back from the edge of the bluff. Twenty centimeters was the average depth of this plow zone.

The backhoe used at Altamira was not available for work at Padre Piedra, hence all trenching was by pick and shovel. The soil was, for the most part hard and difficult to dig, resulting in frequent fragmentation of the sherds. Few large sherds such as those brought up by the backhoe at Altamira survived the pick, although several partially complete vessels were restored in the laboratory from small pieces.

STRATIGRAPHY

There are no constructed or midden mounds apparent at Padre Piedra and we were unsuccessful in our efforts to locate any other sort of definite house remains in the eastern area of the site to which sector we confined our investigations. An effort was made, therefore, to determine something of horizontal intensity of occupation as well as to secure a reasonably deep vertical stratigraphy. Trenches III, IV, and V were laid out over areas showing unusual concentration of sherds, either on the terrace surface back of the bluff edge or against the exposed bluff face itself. Only in Trench III was relative success had in securing a significant stratigraphy.

The shallow cultural deposits at Padre Piedra and the absence of natural stratigraphy of any sort in areas so far tested has made for difficulty in determining cultural change. That there was a time spread present was early recognized by Navarrete (op. cit.) who saw parallels with both Cotorra and Dili-phase pottery types in his small sample. Some Late Classic pottery was also noted in our 1963 surface survey; this was particularly characteristic of the western zone of the site which has not been tested to date. Sherds from all Padre Piedra trenches were tabulated in the laboratory but Table 8 for Trench III is the only Padre Piedra computer print-out included in this report since only there were found sufficient depth of deposit and quantity of material to produce significant statistics.

Investigations at Padre Piedra were hampered by the very short period of time at Green's disposal, and the preliminary nature of results obtained should be emphasized. A careful sampling of the entire bluff face might produce a clearer phase differentiation as well as a more ample inventory of the early Cotorra and Dili cultures. Examination of the bluff face extending west of the roadway showed stony burnt zones which must represent house areas, and in many places the deposit showed depths in excess of one meter. Preclassic pottery was noted in abundance almost continually along the bluff edge to the point where it turns southward. Permission for excavating on the ranch lands west of the roadway was not secured, however, and for this reason investigations were confined to the eastern half of the site.

CERAMIC SEQUENCE

Analysis of the Padre Piedra potsherds was facilitated by their conformance to the pottery types already established for Chiapa de Corzo. The type-variety names used herein
are those assigned by Bruce W. Warren to the Chiapa de Corzo pottery (report in preparation). We are grateful to Warren not only for making the type names and identifications available, but for making many other invaluable observations.

For Padre Piedra we need be concerned only with the typology of the Early and Middle Preclassic Cotora and Dili phases. The few Maravillas phase (Late Classic) sherds found in some surface levels were not typed or tabulated individually. It will be noted also that the use of the Chiapa de Corzo type-variety nomenclature supersedes the “ware” typology utilized by Navarrete for his Frailesca survey which included Padre Piedra (op. cit., Table 1). The Chiapa types were established according to surface treatment attributes, whereas the Frailesca wares were based on characteristics of paste and/or finish.

A description of the 1963 excavations at Padre Piedra follows, together with a brief statement of stratigraphy or other cultural indications apparent in each trench.

TRENCHES

TRENCHES I and II

Trenches I and II were dug on the north side of Monument 1. Navarrete’s test pits near the same monument had indicated that the deposit was shallow (op. cit.:12), but it was hoped that additional material of importance might be found between the stone and the edge of the bluff. Trench I was laid out northwest for 14 m. from the base of the monument and dug to a width of 1 m. Total depth reached was 70 cm., of which the upper 60 contained cultural material. Trench II was laid out northeast, at right angles to Trench I near the base of Monument 1 (Fig. 45). It measured 7 m. long to the edge of the bluff and was dug 1 m. wide and 60 cm. deep with 50 cm. of occupation uncovered. Examination of the exposed bluff face showed approximately 50 cm. depth of culture-bearing deposit between the two excavations.

Total sherd yield was so small from Trenches I and II, with no features of any sort encountered, that Pit 1, a 2 x 2 m. square, was dug at their junction in order to increase the sample size. Another 2 x 2 m. square, Pit 2, was dug on the southwest side of Monument 1, 6.5 m. from the end of Trench II. Both pits were excavated to a depth of 60 cm., of which the upper 50 cm. contained sherds.

Comment

The small significant sherd count from Trenches I and II (Table 7) suggests a sparse occupation of the Monument 1 area during both the Cotorra and Dili phases, and an even more sparse Late Classic utilization. The sample appears much mixed, as is to be expected from so shallow a deposit. But it is significant that the only certain Dili-phase indicator, Tonala White-to-buff (see below for Trench III), did not appear in either of the lowermost two levels, 5 and 6, with only a single sherd appearing in Level 4. The type was never common in these trenches, however, as compared to frequencies in Trenches III, IV, and V. It is apparent that the Cotorra occupation here was somewhat dominant, as Navarrete had previously indicated (ibid.). A transition into the Dili phase with a slight increase in density of debris is suggested by the 50% increase in rim sherds in levels 3 and 2.

It is of further importance that no Tonala White-to-buff sherds were identified in either Trench II or Pits 1 and 2, immediately adjacent to the north and south sides respectively of the existing Monument 1 excavation. This suggests that the few (8) Tonala sherds which did appear in Trench I came from that portion farthest from the monument and closer

![Figure 45. TRENCH II, PADRE PIEDRA](Looking southwest, with bluff edge in the foreground. Monument 1 is seen at the end of the trench.)
Table 7. Count of Significant Sherds, Trenches I, II, Pits 1, 2, Padre Piedra

<table>
<thead>
<tr>
<th>Level and Unit</th>
<th>Tonalá White</th>
<th>Veracruz White</th>
<th>Tapapalapa Enslipped</th>
<th>Limanude Enslipped</th>
<th>P. Piedra Black</th>
<th>Revolution Black</th>
<th>Chiquipacca Smoothered</th>
<th>Pechcalco Smoothered</th>
<th>Culimacoo Red-White</th>
<th>Late Classic</th>
<th>Level Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Trench I</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>16</td>
<td>63</td>
</tr>
<tr>
<td>2 Trench II</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>3 Pit 1</td>
<td>21</td>
<td>63</td>
</tr>
<tr>
<td>4 Pit 2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>5 Totals</td>
<td>31</td>
<td>187</td>
</tr>
<tr>
<td>6 Trench I</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7 Trench II</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>8 Pit 1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>9 Pit 2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>10 Totals</td>
<td>83</td>
<td>667</td>
</tr>
</tbody>
</table>

The data discussed above offer no new clue to the dating of Monument 1 (ibid.). Its actual original placement is unknown, though it is unlikely that so large a stone would have been moved much from its fallen position. Navarrete (ibid.) states that the stone reportedly lay on the surface prior to treasure-hunting excavation which undermined it. This indicates only that the monument, probably slowly settling northward, came to final rest in cantilever fashion upon the modern surface in relatively recent times. Nevertheless, viewing the generally greater population density suggested by the slight preponderance of Dili-phase pottery, together with its known greater sophistication, we suppose a Middle Preclassic Dili rather than Cotorra-phase association for the monument. Even disregarding stylistic considerations, Late Classic sherds are so scarce in the immediate area that it seems improbable that the monument could be of that late date (see Discussion). The possibility should not be overlooked, however. By virtue of predominant surface sherds of the period, what appear to be fallen plain stelae on the western extreme of Padre Piedra are tentatively assigned to the Late Classic era. Monument 1 conceivably could be a part of the same complex, serving a function with which little contemporary pottery was ever associated, or for a very brief period.

TRENCH III

An intensive examination of the bluff edge extending eastward from Monument 1 was made in an attempt to locate an area with a
greater depth of cultural material than the usual 40-50 cm. Thus, Trench III was laid out in the most promising zone and proved to be reasonably successful. Before actual control of the trench was established, the face of the bluff was cut square to expose a profile of the total depth of deposit. With the bluff exposure completed, the trench proper was laid out on the terrace surface above, running 6 m. north and 5 m. east to west (Fig. 46). The southwest stake was used to mark level depths since that was the highest point. Due to the sloping surface, Level 1 was present only in the southwest corner of the trench and was sterile. The trench was excavated to a depth of 1.50 m. (Fig. 47). No cultural material was found below 1.30 m. (see profile, Fig. 48). Level 4 was the first to include the bulk of the overall trench area.

Comment

Sherd counts for Trench III are tabulated in Table 8. This is a computer tabulation made by a simple reuse of the Altamira program, substituting the Chiapa de Corzo pottery type names and the Padre Piedra data. As with Altamira, rim sherds only were included.

Examination of the Trench III sherds had early suggested that those from Level 8 might represent the transitional level or most significant point of change between the Cotorrora and Dili phases. Statistics supported this observation. Table 8 shows Level 7 to have the largest sherd count of any, marking a sharp jump over the lower Level 8. More important, the most definitive Dili-phase pottery, the Tonalá White-to-buff, makes its first meaningful appearance in Level 8 and continues strong through all remaining intact
TABLE 8. RIM SHERD COUNT, TRENCH III, PADRE PIEDRA

<table>
<thead>
<tr>
<th>LEVELS</th>
<th>TOTALA</th>
<th>VERGEL</th>
<th>TAVALAPA</th>
<th>LIMANUDE</th>
<th>PPSLACK</th>
<th>REVOLUCION</th>
<th>LATE CLASSIC</th>
<th>CHUNKIPACA</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NUM</td>
<td>%</td>
<td>NUM</td>
<td>%</td>
<td>NUM</td>
<td>%</td>
<td>NUM</td>
<td>NUM</td>
<td>NUM</td>
</tr>
<tr>
<td>1</td>
<td>40 0.00</td>
<td>0</td>
<td>40 0.00</td>
<td>0</td>
<td>40 0.00</td>
<td>0</td>
<td>40 0.00</td>
<td>40 0.00</td>
<td>40 0.00</td>
</tr>
<tr>
<td>2</td>
<td>2 0.00</td>
<td>100.00</td>
<td>2 0.00</td>
<td>100.00</td>
<td>2 0.00</td>
<td>100.00</td>
<td>2 0.00</td>
<td>2 0.00</td>
<td>2 0.00</td>
</tr>
<tr>
<td>3</td>
<td>2 0.00</td>
<td>100.00</td>
<td>2 0.00</td>
<td>100.00</td>
<td>2 0.00</td>
<td>100.00</td>
<td>2 0.00</td>
<td>2 0.00</td>
<td>2 0.00</td>
</tr>
<tr>
<td>4</td>
<td>5 2.67</td>
<td>100.00</td>
<td>5 2.67</td>
<td>100.00</td>
<td>5 2.67</td>
<td>100.00</td>
<td>5 2.67</td>
<td>5 2.67</td>
<td>5 2.67</td>
</tr>
<tr>
<td>5</td>
<td>15 18.52</td>
<td>97.63</td>
<td>15 18.52</td>
<td>97.63</td>
<td>15 18.52</td>
<td>97.63</td>
<td>15 18.52</td>
<td>15 18.52</td>
<td>15 18.52</td>
</tr>
<tr>
<td>6</td>
<td>33.72</td>
<td>75.28</td>
<td>33.72</td>
<td>75.28</td>
<td>33.72</td>
<td>75.28</td>
<td>33.72</td>
<td>33.72</td>
<td>33.72</td>
</tr>
<tr>
<td>7</td>
<td>40.71</td>
<td>59.29</td>
<td>40.71</td>
<td>59.29</td>
<td>40.71</td>
<td>59.29</td>
<td>40.71</td>
<td>40.71</td>
<td>40.71</td>
</tr>
<tr>
<td>8</td>
<td>44.26</td>
<td>55.74</td>
<td>44.26</td>
<td>55.74</td>
<td>44.26</td>
<td>55.74</td>
<td>44.26</td>
<td>44.26</td>
<td>44.26</td>
</tr>
<tr>
<td>9</td>
<td>47.62</td>
<td>52.38</td>
<td>47.62</td>
<td>52.38</td>
<td>47.62</td>
<td>52.38</td>
<td>47.62</td>
<td>47.62</td>
<td>47.62</td>
</tr>
<tr>
<td>10</td>
<td>51.38</td>
<td>48.62</td>
<td>51.38</td>
<td>48.62</td>
<td>51.38</td>
<td>48.62</td>
<td>51.38</td>
<td>51.38</td>
<td>51.38</td>
</tr>
<tr>
<td>11</td>
<td>55.24</td>
<td>44.76</td>
<td>55.24</td>
<td>44.76</td>
<td>55.24</td>
<td>44.76</td>
<td>55.24</td>
<td>55.24</td>
<td>55.24</td>
</tr>
<tr>
<td>12</td>
<td>59.37</td>
<td>40.63</td>
<td>59.37</td>
<td>40.63</td>
<td>59.37</td>
<td>40.63</td>
<td>59.37</td>
<td>59.37</td>
<td>59.37</td>
</tr>
<tr>
<td>13</td>
<td>63.62</td>
<td>36.38</td>
<td>63.62</td>
<td>36.38</td>
<td>63.62</td>
<td>36.38</td>
<td>63.62</td>
<td>63.62</td>
<td>63.62</td>
</tr>
<tr>
<td>TOTALS</td>
<td>186 16.00</td>
<td>61%</td>
<td>166 49.28</td>
<td>100%</td>
<td>492 73.71</td>
<td>100%</td>
<td>63 5.42</td>
<td>99 5.94</td>
<td>1163 100.0</td>
</tr>
</tbody>
</table>

levels upward. And the principal Cotora-phase marker, the Limanude Unslipped, decreases sharply in Level 8 and percentage-wise continues to be unpopular or non-existent thereafter. Very similarly, the Revolución Black dies away upward after Level 9, demonstrating clearly that this variety also is a Cotora-phase indicator.

The Trench III data suggest that, at Padre Piedra at least, there was a gradual evolution of Dili-phase pottery types out of a Cotora base. The mixing inevitable to shallow refuse deposition may make this transition appear more gradual than it was in actuality, but there seems no reason for supposing any abrupt cultural change during this supposed shift from Early to Middle Preclassic.

The Late Classic appearance, on the other hand, was abrupt. Just as in Trenches I and II, no Late Classic sherds appeared below the 40 cm. level; neither are there any stylistic antecedents at Padre Piedra. The increase from 0 to 15% in Level 4 and to 37% in Level 3 indicate the sudden nature of the appearance of the late pottery. Its intermixture with early Preclassic sherds is the natural result of the churning effects of cultivation, root, and rodent activity in the shallow surface soil.

TRENCH IV

About 40 m. west of Trench I and just east of the road from Padre Piedra to Colonia Revolución as it passes over the bluff, an unusually large quantity of sherds were noted eroding out of the bluff which there slopes at a rather gentle and uneven angle. Trench IV was put into this deposit as a 4-meter-long excavation running north-south (Fig. 49). Between 3 and 4 m. back from the bluff edge potsherds no longer appeared, and they also disappeared vertically at the 40 cm. level.

Comment:

Trench IV appears to have tested the southern limit of an originally larger occupation zone which has been almost destroyed.
by the erosion of the bluff and the cutting away occasioned by the roadway. Since Trench IV sampled only the edge of the occupation, very little was recovered. The sherds indicate that the occupation was almost exclusively of Dili phase.

The confinement of occupation to the margins of riverine bluffs is a practice commonly noted at Dili-phase sites throughout the Central Depression of Chiapas.

TRENCH V

Trench V was located in a cornfield 50 m. east of Trench III. This excavation was made to investigate certain areas which showed concentration of sherds and broken stone. It was observed that a trench running roughly northwest-southeast would pass over several of these areas, and such was accordingly laid out. Fine horizontal control was desired in the expectation that some of these rubble zones would prove to be house sites, and to this end the trench was dug by individual 1 x 1 m. squares (Fig. 50, a). Provision for recording lateral expansion was made by lettering the squares of side trenches left and right, facing northwest; the plan of excavated squares with sherd and adobe fragment count indicated for each is shown in Figure 51. Trench V, then, is a series of 43 grid squares in line plus cross-trench expansions for a total of 96 excavated squares. Vertical control was by 10 cm. levels as usual. Depth of deposit sampled varied from 20 cm. in the southeast end of the trench to 80 cm. in square 43 near the edge of the bluff. The southeast stake marked the square. Excavation proceeded by first removing every other square and then expanding left or right as dictated by the resulting profile or feature encountered. The alternate squares were subsequently removed.

Four features were discovered in the course of excavating Trench V, all of similar nature:

Feature 1
Feature 1 was found centering around stake 25B Left at Level 6 (Fig. 50, b). It was a grouping of sherds and shattered stone, sherds predominating, roughly circular in outline and about 50 cm. in diameter.

Feature 2
This feature centered in square 24A Right and extended into adjacent squares (Fig. 50, c). It was located at the bottom of Level 1 and obviously had been disturbed by the plow. Broken rock and sherds again composed the feature which had no recognizable pattern. Rock fragments were more numerous than the sherds. This is the only feature that was associated with one of the surface zones of sherd concentration. Its shallow location and the observation of Late Classic sherds indicate this feature to be of that late period.

Feature 3
Another deposit of sherds and rock fragments, Feature 3 was roughly rectangular and about 1.00 x 0.60 m. in area (Fig. 50, d), occurring in squares 30 and 30A Right at 50 cm. depth. There were more rock fragments than sherds.

Feature 4
Feature 4 was uncovered on the final day of excavation in squares 38 and 39A and B Left. Like the others it consisted of an accumulation of sherds and broken rock of no apparent order, about 10 cm. thick, at a depth of 70 cm. (Fig. 50, e).

Comment
The occupation of the Trench V area was primarily during the Dili phase with a mixing of Maravillas phase (Late Classic) in the upper levels. Sherds from the three deeper features are Dili-phase types.

Preparations were begun for a table to analyze the horizontal distribution of debris in Trench V, a type of data not elsewhere at hand for the Middle Preclassic. But, unfortunately, time was not available to develop this approach with all its interesting possibilities. It can be pointed out, however, that in square 9 and adjacent squares (Fig. 50, f), there was a slight concentration of sherds and an additional depth of from 2 to 3 levels, which indicates the area to be of particular significance. Adobe is more strikingly concentrated in the same area (Fig. 51), and altogether this suggests a house site.

A larger area of much heavier concentration was noted around Square 24. Adobe fragments were few but relatively constant from Squares 21 through 31 beyond which there was an absence for three squares. Suggested is an area of light construction activity with heavy refuse deposition of pottery indicating an intensive human occupation.
Figure 50. TRENCH V, FEATURES AND PITS, PADRE PIEDRA

a: Beginning Trench V. Looking northwest over bluff and river terrace beyond. b: Feature 1; centered on Square 25 B Left. c: Feature 2; centered on Square 24A Right. Late Classic agglomeration of sherds and shattered rock fragments. d: Feature 3. Square 30 at 50 cm. depth. e: Feature 4. Squares 38 and 39 at 70 cm. depth. f: Pit 9 area.
Square 30D Right had the remarkably high yield of 654 sherds; unfortunately this fact went unappreciated during closing of the dig so that an apparently very promising zone went uninvestigated. A dump is indicated, marginal to the occupation mentioned above.

Failure to find house foundation lines or even clay floors in the areas of apparent domestic activity sampled by Trench V suggests quite informal household activities, at least insofar as architecture is concerned. A careful study of the vessel shapes included both in the feature debris and from one sherd clustering to another might indicate something of the nature of the supposed domestic activity here. But such a study was not possible during the time available.

Figure 51. PLAN OF EXCAVATED SQUARES, TRENCH V, PADRE PIEDRA
Total numbers of sherds and adobe fragments from all levels are indicated.
The brief descriptions below of the various ceramic types and their varieties as known at Padre Piedra do not pretend to be adequate. Full descriptions of each type will appear in a comprehensive study of the pottery from Chiapa de Corzo and other sites in the Central Depression of Chiapas (Warren, in preparation). Except for rare variations, all of the Padre Piedra pottery contained a temper of angular crystal ash, occasionally with quartz particles and hornblende. This material may be natural constituents of the potter’s clay source.

CERAMIC TYPES PRIMARILY OF THE COTORRA PHASE

LIMANUDE PAINTED
(Fig. 52)

This type in the Tapalapa Unslipped group is characterized by the application of red paint to portions of the surface. On teconates it usually occurs only near the rim and generally over a well-smoothed area. Bowls and dishes, on the other hand, seem to have had entire surfaces painted (usually exterior only).

REVOLUCION SMUDGED
(Fig. 53)

Criteria for distinguishing this type from Padre Piedra Black (q.v.) is the greater oxidation of one side of the vessel and sometimes the rim, producing the so-called white-rimming effect. The variety is unslipped and the
whitish areas usually have a more yellowish cast than the Vergel White-to-buff slips and thus are easily distinguished therefrom. This seems to be the earliest known occurrence of definite white-rim-black pottery in the Central Depression. A few sherds look identical to Altamira black ware (pp. 15-16), except that they are not fired so hard. This pottery may be a local variety of the Pampas Black-and-white type attributed to the contemporary Cuadros and Jocotal phases at Salinas La Blanca on the Guatemalan Pacific Coast (Coe and Flannery, 1967:33); see also Appendix.

Forms of the Revolución type are mostly flaring-side dishes, several with thickened rims. Only two tecomates were observed, and bowls are only slightly more numerous.

CUTILINOCO RED-AND-WHITE

(Fig. 54)

Most of the sherds recovered of this type are from flaring-side dishes, with a single jar neck and a few tecomates being noted. Navarrete reports the latter form for his Opaque Black which seems to be the Huehuetán type in this group (1960:24). However, none of the definitive Huehuetán smudging was noted on any of the few Cutilinoco sherds recovered in 1963. One sherd of this type appeared in the Trench III lots.

CERAMIC TYPES COMMON TO BOTH THE COTORRA AND DILI PHASES

VERGEL WHITE-TO-BUFF

(Fig. 55)

This type is notable for its frequently heavy white slip and dark gray to black paste; the Cotorra examples have only a filmlike washy slip. Often the slip has weathered so that the darker paste surface is left exposed. The Vergel variety is distinguished from the Tonalá variety by its lack of decoration and is the second most abundant type at Padre Piedra, following Tapalapa Unslipped. Shapes include flaring-side dishes (most abundant), tecomates, necked jars, bowls, and a pottery stool.

TAPALAPA UNSLIPPED

(Fig. 56)

This is the most abundant type at Padre Piedra; where considerably weathered, however, some sherds counted in this type may be Chuquipaca Smoothed, since it is frequently impossible to separate these two on the basis of paste when the surface is eroded. Some mica is noted in addition to the usual temper. The tecomate is the most common shape, with flaring-side dishes, bowls, and necked jars occurring as well.
PADRE PIEDRA POTTERY

Figure 56. PADRE PIEDRA POTTERY: TAPALAPA UNSLIPPED

- a: Trench I, surface. All others from Trench III.
- e: L-4. f: L-12.
- g: surface.
- i: L-7.
- k: L-7.
- o: L-5.
- p: L-4.
- r: L-6.
- s: L-7.
- t: L-3.
- u: L-4.

PADRE PIEDRA BLACK

(Fig. 57)

This pottery type is smudged black on both interior and exterior, often appearing identical to Verge White-to-buff without the slip. There is some coarse incision or excising. Forms are mostly flaring-side dishes, with a few tecomates and bowls.

Figure 57. PADRE PIEDRA POTTERY: PADRE PIEDRA BLACK

- h: Trench V, Pit 32, L-6.
- i: Trench III, surface.
- k: Trench III, L-7.
- t: Trench I, L-4.
CHUQUIPACA SMOOTHED, CHUQUIPACA VARIETY
(Fig. 58)

This type includes a wide range of paste colors, from brown-to-black through reddish yellow, very similar to Tapalapa Unslipped. The variety has a smoothed finish, both exterior and interior, on bowl forms, but is otherwise undecorated. Tecomates and necked jars are noted in addition to flaring-wall and simple bowl shapes.

CHUQUIPACA SMOOTHED, PICHUCALCO VARIETY
(Fig. 59)

Basis for this variety is incising, mainly simple lines around the rim of open bowls or dishes. It is similar to but much less common than the Tonalá variety of Vergel White-to-buff.

ABERRANT GRAY
(Fig. 60)

Fourteen sherds of a gray pottery were found which resemble Jibalba Gray at Altamira (p. 22) and presumably other gray types from the Middle Preclassic. Shapes are simple restricted bowls and flat-bottom flaring-side dishes, one with wide-everted rim.
CERAMIC TYPE PRIMARILY OF THE DILI PHASE

VERGEL WHITE-TO-BUFF, TONALA VARIETY
(Figs. 61, 62)

This variety is defined on the basis of incised or grooved lines, usually one or two around the inside of bowls and dishes near the rim, and sometimes on the upper surface of everted or thickened rims. The grooves are pre-slip, since the slip occurs in the bottom of the grooves which are usually deeper than the slip is thick. The “double-line break” motif in which the incised or grooved lines break at intervals outward to the edge of the vessel lip is frequent and diagnostic.

LATE CLASSIC POTTERY

None of the Chiapa de Corzo type-variety names for the Maravillas phase were available at the time of writing and no attempt was made to assign the relatively few Late Classic sherds at Padre Piedra to types. Many of these sherds are temperless and a few tempered examples have the usual crystal ash in small quantity. Some identified hornblende was of a better or less eroded quality than that common to the Middle Preclassic sherds.

Most of the Late Classic vessels at Padre Piedra are thin walled (Fig. 63). Decoration is of incised lines. Two sherds have applied dimpled fillets (Fig. 63, k, l); a similar example from the Frailesca is illustrated by Navarrete (1960:Fig. 38, e). Shapes are mostly jars and bowls, with a few flaring-wall dishes. Three hollow feet were found (Fig. 63, bb). Two solid slab feet were found also, one of which is suggestive of Teotihuacán types (Fig. 64).
Figure 63. PADRE PIEDRA POTTERY: LATE CLASSIC SHERDS

Figure 64. SOLID SLAB VESSEL SUPPORTS, PADRE PIEDRA

From the edge of the bluff on the western extremity of the Padre Piedra site was salvaged an intact jar with a jaguar effigy head on one shoulder (Fig. 65). This appears to be of the Maravillas phase; stone foundation lines about 80 m. south of the discovery point also seem to be of this relatively late period.

Figure 65. JAGUAR EFFIGY VESSEL, PADRE PIEDRA
Late Classic period. Enlargement of effigy head at top.

CLAY FIGURINES

Only two human and two animal clay figurine heads were recovered from Padre Piedra; the remaining 54 figurine fragments were broken torsos and limbs. The best examples are illustrated in Figure 66. Three figurine fragments were recovered from Trenches I and II, 28 from Trench III, and 27 from Trench V. The majority are of a buff clay with neither noticeable slip nor paint except for 9 examples of black clay with a thick white slip just as on Vergel White-to-buff pottery. Most, if not all, of these figurines are of the Dili phase.

The meager figurine collection from Padre Piedra suggests no notable variance from Middle Preclassic assemblages known elsewhere in southern Mesoamerica. All are solid except for Figure 66, g, which is part of a large hollow face. One leg is of remarkable size, measuring almost 15 cm. in length (Fig. 66, i). Additional figurines from Padre Piedra are shown by Navarrete (op. cit.:Fig. 12) and Sorenson (1956:Pl. 1).
Figure 66. CLAY FIGURINE FRAGMENTS, PADRE PIEDRA

a: Badly weathered head which appears to have had a single appliqué fillet over the head and down both sides of the face; Tr. V-4, Level 1. g: Mouth, nose, and cheek of a large hollow face; Tr. III, surface. m: Zoomorphic fragment with deep punctate features and appliqué rings around the eyes, only one of which remains; Tr. III, Level 6. n: Zoomorphic appliqué fragment of black clay with partially eroded thick white slip; Tr. V-39D Left, Level 2. Scale ½
PADRE PIEDRA ARTIFACTS

MISCELLANEOUS CLAY OBJECTS

A few small objects of clay other than potsherds and figurines were found at Padre Piedra. They include three clay beads, two cylindrical and one round, all from Trench V (Fig. 67, a-c). All are of an orange-to-brown clay. What appears to be an earplug core was also recovered (Fig. 67, d). A pottery disk (Fig. 67, e) appears to have been worked out of a sherd, its design being part of that of the original vessel. An ornamental piece, probably part of an incensario base, resembles a plant stalk with leaves (Fig. 67, f). Its appendages, three on each side, were applied with little care to the yellowish clay strip, both ends of which are broken.

All of these small clay objects appear to be of Late Classic manufacture.

Figure 67. MISCELLANEOUS CLAY OBJECTS FROM PADRE PIEDRA

STONE TOOLS

A total of 242 stone specimens were saved from Padre Piedra for study; since the area is of stoneless silt, all small stones were considered to have been potential tools brought onto the site by man. The collection consists mostly of fragmented or occasionally intact rounded fine-grained stream rocks. Only a few of the pieces may be identified as definite implements, but 85% have angular edges which may have been of some use (but see final comment below).

Obsidian

Of four obsidian specimens only one piece, from Trench III, Level 3, appears to be worked and was probably a scraper.

Chert

Four of the eight pieces of chert are rounded by erosion and the other four are angular as a result of breakage, but none show definite wear or other evidence of use.

Quartz

Five angular fragments and one rounded stream rock of quartz show no sign of having served any useful function as implements.

Dacite and Quartz Latite

The 224 specimens making up this category include a few identifiable tools. Two larger fragments appear to be parts of manos. Two other fragments have red ocher on one surface and may be parts of grinders or hammerstones used in powdering iron oxide. The remainder cannot be classified as obvious tools.

Some function for the abundant rock fragments at Padre Piedra is indicated, since they frequently were found clustered with broken pottery (Features 1 to 4 in Trench V). They may have been rudimentary pounders or scrapers for some simple task such as breaking of nuts from the Coyol palm native to the area (Navarrete, 1960:2). Or else they may represent the shattered remnants of heated stones used to produce steam for small sweat baths or temazcallis of impermanent nature.
The chronological position of Padre Piedra is shown in Chart 1, appearing on the following page. The site was occupied during at least three phases of the well-established Chiapa de Corzo sequence. The earliest, Cotorra, is dated from about 1500 to 800 B.C. (Table 1). It is unlikely, however, in view of the limited amount of Cotorra material recovered from the site, that Padre Piedra was inhabited during the entire time span assigned to this phase. It seems more likely that it was occupied for a shorter period toward the end of this phase, soon developing into a Dili-phase occupation. Similar depths of deposit indicated by Trench III, nevertheless, suggest that the Cotorra occupation was simply less dense rather than shorter-lived than Dili.

The Dili occupation was more widespread over the site as well as being much denser quantitatively; it may well have endured the entire 800 to 550 B.C. span estimated for the phase in Table 1. Monument 1 is postulated to be related to this more populous phase.

After the Dili occupation, Padre Piedra was abandoned for approximately 1000 years, until the Late Classic Maravillas phase. At this time the Frailesca experienced its maximum occupation with almost every surveyed site in the region occupied (op. cit.:37). At Padre Piedra the principal occupied area during Maravillas times was not the bluff terrace but the higher summits of Cerro de las Pastoras immediately to the south (ibid.: 12). The small amount of late pottery recovered from the top few levels of trenches at Padre Piedra as well as the lack of significant architecture indicate a minor use of the bluff edge at this time. Small stone foundation lines located both east and west of the Padre Piedra ranch houses are presumed to date to the Late Classic era, judging by the late surface sherds in these areas.
Chart 1. Chronological Position of Ceramic Complexes at Early Preclassic Sites in Chiapas and Guatemala
III. DISCUSSION

GARETH W. LOWE

The preceding parts of this report, together with the Appendix, have described the material results of small excavations made at two of the earliest village sites investigated to date in southern Mesoamerica. These sites represent two possible ecological contrasts: Altamira is located on the flat Pacific coastal plain of Chiapas a few kilometers from the ocean, whereas Padre Piedra occupies a river bluff in the great interior valley known as the Central Depression of Chiapas, about 160 kilometers north and inland from the former site.

The Olmec stela at Padre Piedra indicates that this interior village had a ritual role probably not enjoyed by the coastal site. Mounds or obviously built-up areas, however, were altogether lacking at Padre Piedra, which is a typical situation for numerous known late Early Preclassic and early Middle Preclassic river-bluff sites along the upper Grijalva River and its tributaries (Lowe, 1959:11). The Altamira "mounds," similarly, are extremely low and go unnoticed whenever there is any vegetative cover on the land; countless such early sites must exist along the Pacific Coast, only a few of which have come to our attention. Even the larger Altamira mounds, furthermore, are humble platforms constructed during the reoccupation of the site at the very end of the Late Preclassic. The abandonment of both Altamira and Padre Piedra at about 800 and 600 B.C., respectively, seemingly was just before the rise of recognizable ceremonial centers in southern and central Chiapas. Present evidence suggests that the cultural and probably religious centers for this early period were San Lorenzo and LaVenta (apparently somewhat successively) in the Gulf Coast region of the Tehuantepec Isthmus (see further comment below under The Olmec Intrusions). Needless to say, an expanse of little-investigated territory lies between the extremes of this southern Olmec area, and though there is little likelihood that the apparently typical massive stone sculpture would have gone unnoticed, some local ceremonial centers of early date may yet be discovered.

Padre Piedra Monument 1 is sufficiently unique outside the central Olmec area to have led Coe to consider the site to be an "Olmec colony" (1965a:742; Fig. 1). Other than this more obvious symbol, nevertheless, there is nothing to make Padre Piedra any more Olmec than the large number of contemporary site occupations found throughout central Chiapas and the Soconusco, some others of which we now know had Olmec sculpture (Navarrete, in preparation). Ceramic evidence certainly suggests a conservative cultural uniformity throughout, with only very minor regional specialization. Other recovered data combine to indicate that small scale and largely flood-plain farming was the probable economic basis for these early Chiapas communities. If they were indeed "colonies," it seems unlikely that they would have contributed more than occasional pilgrim worship to their Olmec capital, although cotton fibers, food or handicraft specialties, labor tribute, and even military service cannot be ruled out.

The brief investigations at Padre Piedra and Altamira provide at least a beginning insight into sedentary life as first experienced in what appear to have been two somewhat different but equally hospitable environments attracting an expanding population. Excavations at both sites emphasized test pits and probing trenches, but also included cross-mound cuts and more extensive work in refuse zones. Diverse locations were explored and it seems reasonably certain that the recovered sequences and artifact inventory are sufficiently representative to justify tentative suppositions about chronology, subsistence base, and certain other cultural patterns.

The chronological data at hand indicate the provisional phase alignments shown in Chart 1 on the facing page. This chart should be compared with Table 1. A still finer defi-
nition of the Chiapas coast cultural sequence and its exterior relationships may be forthcoming from the Izapa, general Soconusco, and other projects under study. As has been noted, the Soconusco ceramic sequence in Chiapas differs in a few particulars from that reconstructed for the south Guatemala coast. The latter development is admirably summarized in graphic chart form by Figure 8 in the report by Coe and Flannery (1967:23-25). The Padre Piedra and Altamira ceramic complexes correspond in the main only to the early portion of the traditions thus summarized, and the respective regional culture histories are further differentiated in that Chiapas sites reported herein do not reflect the marine ecology typifying the Guatemalan estuary sites.

Excavations of larger areas and detailed functional analysis of artifacts and their associations in both Chiapas and Guatemala are badly needed to enlarge our basic knowledge of the Early Preclassic development. Regardless of these obvious lacks, there seems to be a firm basis for at least outlining and discussing the principal aspects of Early Preclassic culture history in the Soconusco and to indicate apparent relationships with the interior of Chiapas and farther afield. These more objective observations are followed by some further comments of a more speculative nature.

THE EARLY PRECLASSIC PERIOD DEFINED

Without becoming overly involved in polemics, it is worth stating here that the term “Early Preclassic” is used in this publication simply to designate the period of time in which the ceramic-using peoples of southern Mesoamerica began their long journey through the cultural stage that is customarily viewed as being “pre-Classic” for lack of a better definition. There is no visible in situ development leading to this use of ceramics in Chiapas; the preceramic and ceramic stages in the Santa Marta Cave (MacNeish and Peterson, 1962) are not immediately successive. Regardless of whether the already sophisticated Barra and Ocós phases had their beginnings near or far, their appearance in the Soconusco and the Gulf Coast Isthmus regions does herald the recognizable beginning of a lengthy and diverse cultural history antecedent to that of the clearly recognizable Maya contemporaries. Whether this very long and complex culture history is termed Preclassic or “Formative” seems less important than that all are agreed upon the simplistic rather than truly developmental meaning of either term in such usage.

What goes before can hardly fail to influence what follows (providing there is no definite prolonged break in the sequence, a point often difficult to determine), so that the period preceding the Classic developments in Mesoamerica can obviously be considered Formative with some justification. Nevertheless, the period’s culture history is extremely uneven with many rises and falls on its own, some of them involving civilizations perhaps as complicated as those of the Maya and Zapotec. The question is often asked, with justifiable sarcasm, “Formative to what?” The first known ceramic complexes in Mexico may be Formative to Olmec, but only relatively so if the latter owed its main stimulus to outside influence; similarly, Olmec appears to have been Formative to Maya, but the possible role of other influences from Central America or farther afield remain undefined. So it is only in a very grand sense that the term Formative can be applied to all the varied cultural developments preceding the Classic. Some have attempted to confine the term Formative to those mainly preceramic developments on the late incipient agricultural level, beginning the Preclassic with the appearance of clearly pottery-using agricultural villages and this usage may eventually be adopted generally.

The term Preclassic, withal, seems at the present time the least equivocal term for categorizing the ceramic-using agricultural communities in Mesoamerica preceding the establishment of what we may with some justification still refer to as the Maya Empire. Usage of the Classic Maya beginning as a terminal date for the heterogenous Preclassic
stage (including the often debated Protoclassic transition) is a matter of convenience and custom rather than of any assumption that something drastic took place at this time. A parallel may be drawn with the almost world-wide modern practice of dividing man’s history into pre- and post-Christian eras. Little if any immediate contemporary cultural change can be attributed to something that happened in A.D. 0. It is an historical circumstance which only gradually has had its influence felt upon the cultures of almost all extant civilizations. A similarly universal use of the term Classic in Mesoamerican archeology seems justified, its beginning coinciding with that of the Classic Maya, the best-dated early Mesoamerican civilization.

Returning to the problem of an admitted-ly heterogenous Preclassic stage, it still can be assumed, as most have done, that there was a beginning or crystallization of some sort, that there was an intermediate something, and that there was an ending, or more correctly the obvious beginning of something else. We thus end up with the arbitrary and perhaps overworked but handy tripartite device of Early, Middle and Late subdivisions of culture history. The device, and it is nothing more, is used in this report (see Table 1) for lack of what may be termed acceptable historical data for making less arbitrary divisions. The hazy boundary lines for this partitioning are certain to change as archeological research advances.

In the present study all ceramic complexes apparently contemporary with Cotorra (Chiapa I), or preceding it in southern Mesoamerica, are included in the Early Preclassic period. The Middle Preclassic, concurring with general practice (cf. Chart IA in Willey, Ekholm, and Millon, 1964:480-481), is marked by the appearance of pottery generally assignable to a La Venta Olmec horizon (Dili or Chiapa II; see Sanders, 1961:51-52, quoting Warren). Recent evidence from San Lorenzo (Coe, 1966b), indicates that at least some part of the ceramic complexes considered as contemporaneous with Cotorra are already coeval with Olmec sculpture. The pottery of the San Lorenzo phase, which is closely related to the Soconusco Cuadros–Jocotan complexes, is therefore fully Olmec. It would seem possible, then, that an Early–Middle chronological division running between two apparent phases of Olmec civilization (San Lorenzo—Cotorra–Cuadros followed by La Venta—Dili–Conchas I) makes an unwarrantedly major distinction between consecutive portions of a single cultural development. The full significance of what is here termed the Early Olmec cultural complex remains to be determined, but on a purely culture-historical base it would seem that the San Lorenzo phase and its contemporary Chiapas and Guatemala ceramic complexes might better demarcate the beginning of the Middle Preclassic. The Early Preclassic in that case would be restricted to the Barra, Ocos, and other presumably pre-Olmec phases, probably including a pre-sculpture and Ocos-related original occupation at San Lorenzo itself. Pending further publication of the results of the San Lorenzo excavations, however, we continue with the more or less standard divisions indicated in Table 1. This tentative procedure concurs with Coe (ibid.).

EARLY PRECLASSIC BEGINNINGS AT ALTAMIRA

The mobility of successive occupations at Altamira resulted in a failure of the ancients to occupy the studied area completely at all times. This horizontal and vertical non-conformity was noted through the fortunate sampling of rare primary refuse deposits left undisturbed in several instances by the non-use of domestic debris for subsequent construction. Comparison of the Altamira stratigraphy with the cultural sequence as reconstructed and published for the Guatemala sector of the Soconusco enables a clearer definition and chronological alignment of known Early Preclassic ceramic complexes in Chiapas. This had not proved possible previously at the much more intensively occupied (and excavated) ceremonial center of Izapa where most early material had been disturbed by later construction. Regarding the later Preclassic and the transition to the Classic,
of course, the superior Izapa ceramic complexes must stand as the guide for both the Chiapas and Guatemala Pacific coast sectors (reports in preparation). The unique contributions of the brief exploration at Altamira remain the clarification of related Early Preclassic chronologies and the identification of the pre-Ocós ceramic and obsidian chip complexes to which we have applied the phase name of Barra (in deference to the estuarine sand bar at the not-far-distant mouth of the Coatan River, called locally the Barra de San Jose).

The Barra Phase

Material from this newly recognized phase was present only in Mound 19 at Altamira. The Mound 19 evidence is positive, though meager. The deepest and most-abundant mound sample, that from Trench 19-H, contained 783 sherds, of which 84 (Levels 10-14) can be considered exclusively to represent a pre-Ocós phase. The restriction of the typically rather small Barra sherds to the lowermost levels in Trenches 19-A and 19-D further verifies the shallow but distinct occupation underlying the mound.

Inasmuch as the Barra pottery complex occurs stratigraphically below typical Ocós types and forms, it seems certain that it precedes in time somewhat the Ocós phase as known at La Victoria. In so doing it is the most ancient pottery known in Chiapas or Guatemala. It is, furthermore, possibly pre-dated in Mesoamerica only by the rather simple rough pottery known from earliest ceramic levels in Honduras, Puebla, and Guerrero (Brush, 1965). The technical and artistic jump from the earliest crude pottery to the Barra level seems sudden, but could perhaps be explained by normal evolutionary devlopment given the unknown time-space factors involved, there being a postulated 500 to 800 years difference between the two manifestations. Nevertheless, migration or some other diffusion mechanism seems more probably responsible for the abrupt appearance of the Barra pottery on the Chiapas Pacific Coast.

The Barra phase is best characterized by the Cotán Grooved ceramic type. Vessel shapes of this most ancient Chiapas pottery seem modeled after vegetable forms such as squash or gourds known to have served as containers in preceramic or nonceramic societies. They are accompanied by a few stone vessels of a type also known to be a feature of preceramic cave-utilizing groups in Puebla. As suggested in the Appendix and discussed further below (pp. 62-63), the Barra situation could represent a group of recently preceramic people adapting the early pottery craft of northern South America and Panama to the manufacture of clay vessels in forms which duplicate the stone and perishable containers to which they were accustomed. Despite the lack of known intermediary sites, it is quite probable that there are such in parts of Central America where similar ecological conditions exist. As suggested below (pp. 61-64) Honduras seems a most promising area for identification of early occupation sites along what most probably was a rather well-traveled coastal sea route beginning even earlier than the Barra phase. The Altamira Cotán Grooved Red tecomates may have diffused either to or from a site or sites intermediate to Ecuador, judging by similarities to a minor Machalilla type, as described in the Appendix (p. 98).

Some specular-red hematite paint or slip is evident on the Cotán Grooved Red vessels, all subglobular jars or tecomates, but completely lacking are the typical Ocós Specular Red shapes which in Trench 19-H do not appear until Level 9. Another clearly defined Ocós-like but very certainly Barra phase pottery type at Altamira is Tusta Red. Never abundant, it established an open bowl tradition in interiorly painted red ware which was carried on by Ocós Specular Red. Tusta Red is also the type which most closely duplicates the more common stone bowl forms. Monte Incised, a type defined as the second most abundant of the phase, perhaps represents only an incised tecomate version of Tusta Red. Again, as with Cotán Grooved Red, there are suggestions here of a stylistic tradition shared with the Ecuadorian Machalilla phase with the possibility of diffusion in either direction by way of intermediate sites.

The tiny Barra phase occupation represented by the lowermost Mound 19 refuse zone certainly does not indicate a shell-fishing or fishing culture in any way comparable to those thought responsible for the Central and
South American complexes (Barlovento, Monagrillo, Machalilla) which show the closest, and only known significant, external comparisons at this early time level. Beyond this negative observation, it is impossible to conclude much in definite terms about the Barra-phase economic base.

There were no definite grinding stone fragments in certain association with the Barra ceramic complex. Obsidian flakes, or chips, however, were more plentiful in the lower Trench 19-H levels than in any other comparable situation known in Chiapas; prismatic blades are completely absent. This unique flake abundance suggests some specific activity requiring the keen though rudely struck and usually unretouched edges of the volcanic glass chips. The banded obsidian is an item imported from some distance and it may be assumed that it played an important part in the economy. The small flakes conceivably could have been fitted into sockets in wooden handles and theoretically have functioned as anything from knives and sickles to crude sword-like weapons or true felling tools, though they seem much too brittle for this use. Their concentrated occurrence in supposed dwelling refuse suggests usage in a restricted, domestic, area. Edges of the flakes show little secondary chipping as from blows, furthermore, so that their use more probably was confined to the cutting of relatively soft foodstuffs, fiber, animal hides or other kitchen or craft activity.

Noted in the Appendix (p. 128) and commented upon at length below is the recently made suggestion that the obsidian chips common in both the Barra and Ocós phases may have served as blades in manioc graters. It is true that flint or jasper would be much more satisfactory than obsidian for such a use, but an available source of supply and ease of working rather than ideal suitability may have dictated utilization.

A more comprehensive assessment of the Barra phase can be made only if and when more adequate data are produced by future excavations. The ironic chance discovery of this stratigraphically isolated cultural unit beneath the last mound tested at Altamira was a stroke of good fortune: of nine elevations probed only one produced the Barra evidence. Additional finds of this complex are needed to prove the certainty of even the slight temporal priority we have assigned to it. The suggested guess date of 1600 B.C. for the beginning of Barra is simply a placement before Ocós (itself poorly dated) and at the end of Machalilla. Comparisons with the Ecuadorian complexes are apparently critical; the Barra complex seems certainly non-Chorrera-like and to align better with the preceding Machalilla, but as already postulated probably represents an influence from intermediate sites rather than direct contact between Altamira and the coast of Ecuador. The culture responsible for the Barra influence may actually be somewhat older than 1600 B.C.

The Ocós Phase

Ocós Specular Red is the principal Altamira-Ocós pottery type (80 sherds). It conforms completely to some Ocós type forms known at La Victoria and differs only in its more limited shapes; more extensive Altamira excavations could be expected to enlarge this inventory. The more interesting of the two identified Altamira-Ocós types is Michis Thin Tecomate. To all appearances this type corresponds to the “tripod neckless jars” of the La Victoria Coarse type of the Ocós phase at La Victoria except that the Chiapas examples are not from tripods so far as evidence indicates (one possible support scar in the related Monte Incised type does suggest the possibility (Fig. 75, f). The clear-cut Michis rim does not appear at Altamira until well up in the sequence and seems a natural development out of Monte Incised; this circumstance made some problem in correctly associating decorated body sherds. Michis Thin Tecomate, nevertheless, is a common Early Preclassic type at both Izapa and other sites where the earlier Barra phase types seem to be generally lacking.

Michis Thin Tecomate is almost the only pottery type found in a group of small lagoon island sites (Islita and Isloha) tested in the mangrove swamps near Chantuto and Mapastepec, farther up the coast from Altamira (Navarrete, in preparation; for comment on this general area and the implications of its shell middens for a preceramic culture, see Drucker, 1948:165 and Lorenzo, 1955). Investigation of these estuary sites is still in-
complete, but it already appears obvious that the great preponderance of the Michis Thin Tecomates (alias La Victoria Coarse neckless jars) at these ancient Chiapas fishing, shrimp­
ing, and shellfish gathering communities matches that of the Guatemalan Ocós estuary village for the same reason; for gathering and cooking the tideland harvest. Their relatively limited appearance at Altamira and Izapa is probably a true indication of the absence or unpopularity at these farther inland sites of the estuary-oriented economic basis.

The relatively late appearance at Altamira of the two unmistakable Ocós-complex types, Ocós Specular Red and Michis Thin Tecomate, would seem to make them contemporary with the supposedly post-Ocós Jocotal types (note Table 13, Appendix). The explanation of this situation, however, appears to be that Levels 6 through 9 in Trench 19-H represent a 40 cm. zone of quite complete intermixture resulting from Cuadros–Jocotal reoccupation of the very low mound surface which to all appearances had not received pottery deposition for several centuries following the original Barra–Ocós utilization. I have commented elsewhere upon the fact that the Ocós and Barra sherds are peculiarly attractive and seem to have been picked up and even re-used with unusual frequency (p. 93). Failure of the Altamira-Ocós types to appear in any significant numbers in the mound trenches dug elsewhere at Altamira which did provide heavy Cuadros–Jocotal refuse supports the explanation of mixture causing the apparently contemporary position of the two complexes in Trench 19-H. Shallow deposits such as those constituting Mound 19 are necessarily tricky; dependence upon a single deposit-test could lead to quite erroneous conclusions.

The evidence at hand indicates that the Ocós-phase dwellers of Altamira occupied a rather extensive area but very sparsely or for brief periods. Sherd quantities everywhere are very slight. Individual sherds are typically small, a result of the thinness of the pottery and its superficial deposition which submitted it to fragmentation from trampling. It is not unlikely that these early settlers moved frequently from place to place within their general occupation zone around the Altamira lagoons, following seasonal clearing of their planting fields.

As the more strictly farming cousins of the La Victoria-Ocós fisher-folk, the Altamiranos of this time may have cultivated a number of root crops, as well as beans, squash, and apparently cotton (Coe, 1961:115). The observed ideal suitability for cotton of the present-day Altamira microclimate may have been equally true 3000 years ago. Conversely, the drainage pattern should have been slightly more marked anciently. We may suppose that cotton, beans, and squash were confined to the more elevated areas and took advantage of the early ending of the rainy season for maturation, the briefness of the wet season being a peculiarity of the narrow coastal plain near the sea. Root crops, on the other hand, might have been harvested both on the better drained elevations during the wet season and in the lower lagoon margins during the dry season. This dry season potentiality may have been the important factor in Altamira’s early ecology. Gradual silting-in of the lagoons, with the resultant earlier drying out of their margins, may have influenced apparent removal of the population to riverine sites early in Middle Preclassic times.

The Question of Manioc versus Maize

There is, unfortunately, little positive evidence to indicate the subsistence base for Altamira during the Barra and Ocós phases. The negative evidence must be examined to determine the possibilities. While very scarce, both small mammal and fish and human bone did occur in good condition at Altamira (at least in Green’s excavations on the southern periphery, pp. 31-32), so that it must be concluded that their near-absence is a true cultural indicator and not an accident of the preservation factor. For shell we can be less certain, since none at all was found, though it seems reasonable to suppose that had it ever been present it would have survived as well as the bone. What does seem certain, therefore, is that some staple cultivated crop sustained life in this early community. It is justifiable to inquire if this was maize or some other cultigen. Root crops have already been suggested, with manioc the principal candidate. The facts and fancies to support
this contention as given below can undoubtedly be subjected to some further empirical evidence and arguments as research advances, or so one may hope.

Metate and mano fragments appear only with the later Early Preclassic materials at Altamira, and, while this does not necessarily require maize cultivation, it is probable; impressions of 50 maize cobs were recovered from Cuadros levels at Salinas La Blanca (Coe and Flannery, 1967:71, 72). It seems equally probable, however, that root crops were cultivated from the beginning: manioc griddles do not have to accompany use of the root, as has been reiterated by Evans and Meggers (1960:341-343). A strongly documented plea for greater recognition of the probably very important role of root crops (manioc, sweet potato, jicama, and yautia) in early tropical Mesoamerican agriculture has been made recently by Bronson (1966). I tend to agree with this argument.

If the obsidian flake frequency at Altamira can be taken to indicate a manioc-based subsistence as previously suggested, it is well supported by the lack of definite metates in the Ocós as well as the Barra phases. At La Victoria Coe considered that during the Ocós phase there were only “Crude milling stones . . . which can hardly be called metates” (1961:115). The absence at Altamira during the Barra and Ocós phases of either the maize-indicating metates or of evidence for a fishing and shell-gathering economy makes the cultivation of manioc a welcome supposition; this cultigen common to most of lowland tropical America should have been a favored crop, especially on the Soconusco coastal plain and peneplain where sweet manioc (yuca locally) is a very prolific producer at the present day.

The Ocós-phase cultural similarity of Altamira and La Victoria is evidenced not only by the pottery complexes but by the stone artifact inventories as well. At both sites abundant obsidian flakes fall off in quantity rather sharply after the Ocós phase, and true metates make their appearance in the area at this time, approximately 1100 B.C. Furthermore, at Altamira there is evidence of an hiatus at the end of the Ocós occupation, and from the work of Coe and Flannery at Salinas La Blanca it is postulated that La Victoria was abandoned for 200 to 300 years at the close of the Ocós phase (1967:67, 70; cf. Tables 2 and 3). On the other hand, at Tehuacan in southern Puebla well-formed metates began to be made as early as 4000 B.C. and continued in unbroken development thereafter (MacNeish, 1962: 34-38; Fig. 9). The picture thus suggested of cultural interaction in the Soconusco is quite clear. Its very obviousness, in fact, may engender suspicions of a willful desire to propose premature conclusions.

The present evidence of obsidian flake diminution accompanied by the sudden appearance of metates in the Soconusco may only suggest a manioc economic basis giving way to one based upon maize, but pottery comparisons definitely do show without any doubt an early ceramic-using culture oriented to South America and lower Central America giving way to another (Cuadros-Jocotán) unequivocally related to the north-central Chiapas, Veracruz, and Puebla. There appears to be no reason to question obvious implications of these two phenomena.

We know that maize originated very early in Puebla and central Mexico but was slow in reaching, or developing in, South America. On the basis of discovered ceramic griddles, manioc has an indicated domestication in South America by 1000 B.C. (Rouse and Cruxent, 1963:111, 112), but probably began much earlier. Lathrap (1966:924), in arguing for the pre-1000 B.C. flood-plain cultivation of manioc in Venezuela and Colombia, enlightens us further:

... Saladero, Momil I, and Malambo do not represent an incipient manioc economy but a fully developed economy, based on bitter manioc (the more evolved cultigen of the cultivated varieties), in which the aim was to produce a storable and marketable surplus of flour and bread. The available evidence suggests that the agricultural adjustment to the tropical flood plains began almost as early as the shellfish collecting adjustment to the coast.

Future additional study of the flood plains of the Pacific coast of Guatemala and Chiapas may uncover more precise evidence of practices which paralleled the “... early, highly developed systems of root crop agriculture that appear before 1000 B.C. in the flood plains of several of the larger rivers of
Northern Colombia..." (ibid.), as so well described by Reichel-Dolmatoff in his recent popular book (1965:Ch. 5). A similar study of the Gulf Coast might also be fruitful.

In the Soconusco, at any rate, we apparently do have a meeting place of two distinctly oriented and chronologically differentiated agricultural economies, with that of maize soon becoming dominant. This maize-manioc confrontation in Pacific Coast Guatemala and Chiapas, if such it really was, seems to have had drastic social consequences. In their survey of the Ocós area, Coe and Flannery (1967:85-87) found no site that "definitely contained pottery of both the Ocós and Cuadros Phases" though 3 of the former and 4 of the latter were identified. Accordingly, they hypothesize a 100-year gap between the two occupations in the area (op cit.: Table 3). On the Chiapas side of the Suchiate we have located sites with both complexes, including Izapa and Altamira, but a recognizable transition is lacking in the meager and mixed data. Other Chiapas sites have only one or the other, and altogether the picture presented is one of discontinuity.*

The end-of-Ocós hiatus so widely noted over the Soconusco may have resulted from a slight shifting of locale to better accommodate maize production rather than from any general abandonment of the countryside, but the much simpler nature of the maize-associated Cuadros ceramic complex which quickly dominated the scene does suggest some change in the populace or else a lapse of time, as we have already speculated (p. 59). The ceramic types associated with the possibly manioc-based Ocós economy had already exerted their influence northward to San Lorenzo, and apparently northwestward to southern Puebla and Central Veracruz as well, by ca. 1300 B.C. and certainly by 1100 B.C. (Coe and Flannery, 1967:25, 75). Conversely, the presumed corn-bearing, heavy-tecomate-using culture reaching down from the northwest seems to have extended through Chiapas and Guatemala into Central Honduras before 1000 B.C. Maize (and the large tecomate) appears to have arrived in Peru, and probably northern South America, somewhat earlier, not unlikely carried as a reciprocal product by the same sort of far-ranging folk responsible for establishing pottery usage in Barra-phase communities well to the north before 1500 B.C. Any stopping places of these early travelers, whether they moved by land or sea, remain unknown.

The use of root crops is a practice hard to pin down in the archeological record, particularly in the moist climates to which they were best adapted. Nevertheless, their possible role in the development of sedentary communities is being given increasing importance. Willey has succinctly stated the problem which begs attention in Middle America (1966:143):

*Some hope for demonstrating an Ocós-to-Cuadros transition was raised by an important new Ocós-phase site recently discovered by C. Navarrete at Colonia Aquiles Serdan, about 10 km. northwest of Altamira. Test excavations at this lagoon-edge site revealed a very extensive Ocós-like complex with a wide variety of forms and decorative techniques rivalling those of La Victoria itself; the relatively thick Ocós deposits are covered by a heavy and very typical Cuadros or Jocotal occupation. Results of this investigation will be reported in a forthcoming paper, but they already indicate both a typological and stratigraphic break in the sequence as noted above.

Were there other domesticated crops already in residence on the Mexican coasts before the spread of maize out of the highlands? Could these have been root crops of local or even of distant South American tropical forest origin? Archaeologists, geographers, and botanists studying these and other problems probably can be certain of only one thing: that regional interchange of cultigens, on both small and large geographical scales, was an ever-important factor in the trend toward agricultural efficiency and that such exchanges probably began earlier than we now suspect.

THE PROBLEM OF LONG RANGE DIFFUSION

The foregoing discussion has included a gross, and much oversimplified, speculative statement of what may have been one of the major developments in Mesoamerican culture history, the apparent early replacement of manioc by maize as the staple crop in lowland areas. Only intensive, and extensive, excavations will provide details of the historical
and cultural processes implicit in such an outstanding example of human group interaction in lower Mesoamerica between about 1500 and 1000 B.C. Without these details it is probably futile to wonder out loud about the nature, means, and results of the contact situations involved, but I yield to the temptation, somewhat, with the following speculations.

Despite the lack of any discovered major ceremonial ruins of Early Preclassic date on the Pacific coast, there are indications that something more than a village farming and gathering society already was functioning. The earliest pottery types of Altamira, La Victoria, and other sites, particularly those of the Ocós-phase complexes, are excellent well-formalized wares found with little variation over a relatively wide area; surely these are products of a specialized craftsmanship, superior in many ways—both aesthetically and materially—to that which followed it for many centuries. The widespread distribution of this distinctive early pottery, including what are almost surely sea-borne relationships as far distant as Ecuador and Peru (Coe, 1960:367-369; 372), suggests an active interplay through trade or otherwise-motivated travel between far-flung areas. This is not a situation typical of simple farmer-gatherers.

In the description of the somewhat earlier Barra-phase pottery types of Altamira certain apparent relationships to the south—Panama, Colombia, Ecuador—have been noted (pp. 98-102). The significance of these not definite but certainly probable long-distance relationships escapes us for lack of additional specimens and better and more ample cultural proveniences at both extremes. Similar ceramic identities may be, and are, cited as evidence for sea travel, as part of increasingly conclusive data for various areas of the New World (Ford, 1966). The argument for cross-Pacific contact of so extreme a nature as that of Japan-to-Ecuador between 3000 and 2500 B.C. (Meggers, Evans, and Estrada, 1965:157-171), makes the problem of ship travel from or between Ecuador and Guatemala and Chiapas within the following millennia deserving not of questioning but of an earnest search for possible further details.

An outright acceptance of “close contact through sea trade” (Coe, 1960:390) as the explanation of ceramic similarities between the Chiapas-Guatemala Pacific Coast Soconusco province and the Guayas area of coastal Ecuador, for instance, has been tempered by an oft-declared lack of study of the intervening area. However, negative evidence from recent research in lower Central America (Nicaragua to western Panama) lends no support to the existence of overland diffusion routes between the American continents during the Early and Middle Preclassic periods, with no large ceremonial centers known in this Intermediate area until very late Pre-columbian times (Willey, 1966:144). While this is true, far too many lacunae remain to rule out coastal shipping or intermittent sea jumps of lesser magnitude than those suggested by the simple proposal of “sea trade between Ecuador and Guatemala.”

The Possibly Important Role of Honduras

Following the preceding line of thought and narrowing the contact gap between the extremities of Nuclear America, it should be pointed out that an apparently unrecognized connection with the previously cited second and third millennia B.C. Valdivia phase of Ecuador is present, to all appearances, in Honduras. Stone (1937:Fig. 39, upper two rows), in addition to rocker stamped and brushed tecomates, shows 4 other coarse incised sherds from Caingala, Comayagua Valley in central Honduras, and states: “The pottery found here is typical of most of the valley sites” (op. cit.:13). The Caingala illustrations resemble closely Valdivia Incised, especially Motifs 1, 2, and 3 (Meggers, Evans, and Estrada:Pls. 72, a-c; 73-75). Again in her Fig. 67, Stone shows sherds from Sulaco, a site on the Sulaco River, a branch of the Uluã, which aside from additional rocker stamping have Valdivia-like coarse incising, including the nodule and “network” Motif 6 and other distinctive form and design combinations typical of later (Period C) Valdivia Incised (cf. Meggers, et al., op cit.:Pls. 67, 77).

The few above-noted possible early Honduras-Ecuador ceramic resemblances might be disregarded as fortuitous; the comparison is bulwarked, however, by additional suggestive Honduras sherds from Lo de Vaca on the
Rio Humuya near Yarumela and from the Choluteca region on the Gulf of Fonseca. Baudez (1966) reports various Preclassic and "Early Classic" ceramic complexes in these regions which seem to me to encompass much earlier pottery, including possible examples of Valdivia Incised (Fig. 5, B), Valdivia Corrugated (Fig. 7, A), and less directly Valdivia Combed (Fig. 7, B, C). Less necessarily significant for being somewhat less unique, are examples of shell-back stamping (Fig. 4, J, K) and rocker stamping in both banded and areal applications (Figs. 4, H, I; 5, A). Certainly it is obvious that central Honduras cries out for extensive excavations. One also is led to suppose that the coastal region around the Bay of Fonseca indeed does have the Early Preclassic intermediate sites so often postulated but seldom intensively looked for.

M. Coe already has pointed out the similarity of a great part of the Honduran ceramic complex Ulua Bichrome (Strong, Kidder, and Paul, 1938) to both Ocós and Chiapa I and II (1961:127). More intriguing from a developmental point of view is the apparently pre-Ocós position of other Honduras ceramic complexes known as Yojoa Monochrome (Strong, Kidder and Paul, 1938) and Yarumela I (Canby, 1951). Coe (1961:126, 127) describes these ceramics as follows:

The earliest phase in Honduras, found at the base of Canby's excavations, is his "Eo-Archaic" or Yarumela I. Deposits of the phase lay directly on sterile soil, and featured extremely crude pottery, generally plates and small, simple jars. The plates have rims thickened to produce raised edges, and look suspiciously like manioc griddles of lowland South America. Jars are both necked and neckless. Decoration is rare, and is confined to a red wash-like paint, crude incising, and fillets and applique knobs of clay some of which have been reed-stamped....

Yojoa Monochrome may represent an occupation of the region to the northwest of Yarumela on the same time level, but only a few hundred sherds are available for comparison. They appear to have been of a crudeness comparable with that of the "Eo-Archaic" and have few affinities with phases elsewhere. It is a possibility that this phase antedates Ocós.

The crude pottery of Yarumela I seems to resemble and parallel in time the coarse Purron ceramics of Tehuacan (MacNeish, 1962:36) and the "Pox Pottery" of coastal Guerrero. The latter is considered by its finder to be the oldest pottery in Mexico (2400 B.C.; Brush, 1965) but it is said to be very similar to the Purron pottery estimated by MacNeish (1964:36) to have begun at about the same date.

Stone Bowls: Antecedents or Contemporaries?

With at least the above mentioned two, and possibly three, ceramic configurations present in Mesoamerica by 2000 B.C., the question immediately arises: what is the relationship of the well-developed Barra complex, apparently dating to about 1600 B.C., to these crude antecedents? It should be re-emphasized here that the earliest Mexican pottery described above seems patterned closely after ground stone mortars and vessels which had been manufactured in Tehuacan, at least, during the previous three thousand years, and that examples of the same carefully ground stone vessels were present in the Barra-phase material at Altamira (p. 130); this suggests that we are not dealing with cultural isolates despite considerable spacial and some temporal separation (if our respective guess dates are correct). Furthermore, the Barra pottery shapes are nearly limited to just those forms known in the ground stone prototypes: flat-bottom bowls, hemispherical (or "round-side") bowls, and tecomates. The only Barra plastic departure from the pre-ceramic stone container norm was grooving or pseudo-fluting which may be assumed to be in imitation of natural forms such as those of the gourd or squash whose shells also served as containers.

The problem of interrelationships between the earliest-known Mesoamerican ceramic developments is complicated by the technically superior pottery which was being made in Ecuador from an apparently earlier date. The evidence at hand for possible diffusion from the south during the Barra phase might be so construed as to attribute the development entirely to such diffusion, and rule out completely any inspiration from local sources. Nevertheless, the restriction of Barra pottery-shape norms to non-ceramic vessel antecedents (and contemporaries), would suggest that what may have diffused from the south
was skill and little else except a few rather close decorative design similarities.

In some further remarks on the possible South American contribution to the genesis of Mesoamerican pottery forms from stone antecedents, Coe and Flannery (1967:105) conclude that very probably the idea only of firing clay moved northward at a very early date. The notion of a concept moving rather than actual objects which might have set a different form style is congruent with the probability that these earliest pottery innovations represent the results of weak indirect diffusion or else interaction with small, nondominant groups or individuals exchanging ideas but few artifacts.

The Pervasive Simple Vessel Forms

In spite of the logic of the preceding argument for stimulus diffusion only, some nearly direct contact between Altamira, Barlovento, and Ecuadorian sites is indicated by the similarities of both vessel shapes and incised and grooved decorative motifs as exemplified by the type Cotán Grooved (p. 98). Additionally the extremely rare Petacalapa Black zoned punctate pottery may be a direct import from a southern site. Failure to adopt the more exotic Ecuador shapes common in Machalilla suggests either that borrowing was selective or else, most probably, that this was not the source. It is significant that the strongest Altamira resemblances are with very minor Machalilla types, so that it is logical to suppose that these are introduced types at the Machalilla sites. Diffusion-spread from an intermediate site or sites, perhaps showing even closer parallels to the Barra complex, is to be supposed.

The Ocós-phase pottery types represent a sophisticated elaboration upon the poorly known Barra-phase beginnings. The evolution is not yet understood, and may involve possible “Asiatic” influence commented upon below, but it is thought to have been brief. These Soconusco adaptations, if such they really were, of the excellent South American pottery craftsmanship had an as yet undetermined total impact on southern Mesoamerican ceramic development in general. The published Ocós forms indicate only a minor enlargement of the Barra shape inventory; additional vessel types found in the apparently contemporary Aquiles Serdán Ocós-like deposits (note, p. 60) included both slab-footed bowls and effigy forms, but failure of these to become popular indicates the pervasiveness of an existing culture favoring simpler vessels. The generalized Ocós pottery types and restricted shape inventory are noted widely on the Chiapas coast, less extensively on the Veracruz Gulf and Guatemala Pacific Coasts, and if we can rely on Coe’s 1961 observation, in Central Honduras. An Ocós influence on the Tehuacan valley pottery also is seen for the Late Ajalpan phase, between 1300 and 1100 B.C. (Coe and Flannery, 1967:70, referring to MacNeish, 1962:37-38).

The Ocós-like complexes died out or were cut off everywhere before about 1100 B.C., and the extent of direct influence upon the ensuing horizon is an open question. It is generally agreed that Cuadros and Cotorra are not solely developments out of an Ocós base. They seem, rather, to be southward-spread manifestions of the now true Olmec pottery styles known at San Lorenzo. These styles perhaps fermented in southern Veracruz as a result of a meeting of the more ancient Mexican and Ocós progenitors. If so, the transitional complex seems not to have been found, but need not be far away and indeed might yet be found beneath sections of well known but inadequately explored Olmec sites in the central or “climax” area. If no such transitional phase is identified in that area then the San Lorenzo phase occupation at San Lorenzo will continue to appear to be as intrusive there as does the Cuadros phase on the Pacific coast of Chiapas, and the search for Olmec antecedents will be directed toward Oaxaca, Guerrero, Morelos and southern Puebla. Such a development would seem to deny to Ocós a directly ancestral role in the Olmec development, but would invite a search for a perhaps coeval and equally esoteric culture farther north in the coastal regions of Oaxaca and Guerrero. Not to be ignored, however, is the extreme ceramic shape conservatism typifying the Olmec and apparently Olmec-related pottery complexes in the Isthmus and Chiapas–Guatemala regions.

The early Olmec shape traditions followed and intensified the earliest Mexican
pottery beginnings as we know them at Tehuacan, and continually emphasized flat bottom bowls, tecomates, and less commonly, necked jars, to the near exclusion of other forms. Even in the later Olmec (early Middle Preclassic) complexes, as known from La Venta Complex A, Chiapa de Corzo Dil phase, and the La Victoria Conchas 1 phase, there is only rare departure from these three basic forms (see pp. 70-73).

Possibly Northern Asiatic Traits

Returning to the problem of long distance diffusion in the southern Mesoamerican Early Preclassic, it should be re-emphasized that Altamira and the Soconusco reflect widely noted multiple antecedents for their ceramic development. In addition to the autochthonous central Mexican and the South American diffusion sources postulated here for the Barra phase, Coe believed that ultimately northern Asiatic traits arrived via the eastern woodlands of North America to influence the Ocós ceramic complex (1960:389, 390). Coe later retreated to a noncommittal position (1966a:44) as follows:

Many Ocós potsherds were found to have been impressed with cord or twine (sometimes so fine, it must have been cotton thread) which had been wrapped around a paddle. Cord-making is known on Neolithic ceramics in much of the Old World, and is characteristic of the first pottery in northern North America; its appearance in Ocós, thus far unique in Mesoamerica, cannot be explained.

A somewhat more positive stance is taken by Ford (1966:783, 784):

It seemed probable (and still does) that paddle-malleated ceramics... had entered North America by way of Bering Straits. Rocker-stamped pottery accompanies these traits in the Neolithic of north-central Siberia, and it is possible that the entire Hopewellian complex had filtered in by a northern route. How these traits might have passed over the intervening miles of tundra and forest is obscure, but similar obstacles beset proponents of southern origins.... unfortunately... no pottery making cultures to the north have yielded radiocarbon dates older than 1200 B.C.

However this problem may be resolved, it is of some slight importance for Altamira as presently known, but much more so for Izapa and Aquiles Serdan, where cord-marking is found on Ocós-like pottery in some quantity (Eklhorn, n.d.; note on p. 60).

The Arguments for Migrations

The long-range diffusion evidences for Altamira are perhaps rather meager but nonetheless are forceful, viewing the total lack of local antecedents for a ceramic complex which is well developed at first appearance. Due to a number of negative factors in the quite well examined Chiapas regions, we have pointed to Honduras as an area more likely to supply answers to problems of diffusion between Middle and South America, a problem which must be answered before actual migrations can be defended. To summarize this aspect of the situation, central Honduras even in its presently poor state of investigation provides a number of critical ceramic complexes: 1) the early Honduras “Eo-Archaic” pottery of Yarumela which seemingly parallels the oldest known, crude ceramics of Mexico (not found so far in Chiapas); 2) the sherd samples of Stone and Baudez which suggest the Valdivia complex of Ecuador and which may date as early as or even earlier than the crude “Eo-archaic” ceramics; 3) an Ulua complex paralleling the Ocós and Cuadros-Cotorra phases slightly later than the preceding manifestations; and 4) an early Tlatilco configuration (described below, pp. 70-71) which seems quite absent anywhere in Chiapas.

From the above recapitulation, it should be apparent that it is probably futile, and certainly foolish, to quibble at much length about the nature, method, or direction of diffusion between South America and Mesoamerica until at least the known or suspected Honduras early complexes are researched in detail. If this much Early Preclassic evidence has appeared there from cursory surface collections and scattered minor trenches, it is obvious that data from large-scale excavations could be revolutionary.

Knowledge for postulating early migrations within the more central Mesoamerican regions is admittedly inadequate also. There are, nevertheless, strong suggestions of some early pottery-using population movements in southeastern Mesoamerica. The first, seeming-
ly, was northward out of South or Central America, followed later by a northward spread of Ocós traits from the Soconusco. A reverse Cuadros trait spread we associate with an expansion of the Olmec people from the Gulf Coast isthmian region. A final Middle Preclassic period migration is conjectured to account for much of the Lowland Maya occupation taking place about 600 B.C. A survey and excavation program with such an aim could elucidate any of the foregoing possibilities, but for the moment we must confine ourselves to theories based on rather limited evidence.

Some further arguments for southern Olmec and Preclassic Maya movements are included in the following sections, but the ceramic evidence for an apparent Early Preclassic migration sequence can be summarized here. Considered together, the earliest grooved red thin tecomates and earliest black ware traditions in the greater Isthmus area suggest a possible diffusion succession pattern which in turn supports the idea of movement of peoples. First, pottery techniques moving north through Central America from northern South America appear to have been adopted on both sides of the Isthmus by or soon after 1500 B.C., in many places as part of the original discovered human occupation. In the Soconusco a “tropical lowland” root crop economy seemingly was maintained with no identifiable interference from possibly existing non-agricultural (or at least non-ceramic) tribes throughout the span of the Barra and Ocós phases. On the northern side of the Isthmus, on the other hand, there either immediately or very soon was an interaction with the maize-cultivating and apparently already pottery using groups known to have been located farther northwest and inland but also possibly already present on the coastal plains. This interaction perhaps gave rise to, or at any rate accompanied, the birth of the Olmec civilization as we know it, including the formation of the Cuadros-like San Lorenzo ceramic complex.

The now fully Olmec ceramic styles (p. 67) and their human carriers moved outward from the climax area, and in the one instance eastward and up the Grijalva River into the Central Depression of Chiapas to form the Cotorra complex as the first appearance of pottery in that region. In the second instance, the movement was back across the Isthmus from San Lorenzo and southward into the Soconusco where the apparently corn-cultivating Olmecs succeeded in quite completely upsetting the existing Ocós cultural pattern (p. 60). An associated movement westward from the Isthmus centers may have shared in establishing the apparently Olmec-related pre-Monte Alban I civilization in central Oaxaca at this same time (K. Flannery, personal communication), but the actual Early Preclassic directions of movement in this area are not yet demonstrated.

THE OLMEC INTRUSIONS

The apparent break in the occupational development following the Ocós phase is discussed above as part of the evidence for a possible maize-manioc confrontation at that time (pp. 58-60). The markedly changed character of the following Cuadros phase on the Pacific coast and the initial occupations represented by the contemporary Cotorra complexes in the interior of Chiapas indicates that Altamira and Padre Piedra were only two of many hamlets being established or modified by a vigorously expanding population. To judge by its pottery and stone work, this culture was so closely related to the Early Olmec civilization in the southern Gulf Coast region as to justify considering it an essential albeit rural part thereof. Not only did the Cotorra and more particularly the Cuadros peoples practically confine themselves to the dominant pottery traditions known at the Early Olmec site of San Lorenzo, but the ensuing Late Olmec sub-horizon shows that these general traditions were maintained over a long period of time throughout the greater Isthmian area. The generalized Olmec ceramic influence, at least, was dominant across Chiapas at least into the Middle Preclassic, up to an approximate 600 to 500 B.C.
date. That the Early and Late Olmec developments did not simply result from a smooth internal transition region by region is demonstrated below.

The Dili (and Late Jocotal) complexes conformed closely to what I term Late Olmec pottery at La Venta Complex A (see Sanders, 1961:52, quoting Warren) and to that in the N.W.A.F. collection from a bulldozer trench through the “North Pavement” area of La Venta (described in Drucker, Heizer, and Squier, 1959:233-235). The sharply modified stylistic horizon following this was equally pervasive, “a new ceramic tradition being established throughout southern Mesoamerica” (Warren, quoted by Sanders, 1961:52), but whether it should be characterized culturally as “Late Late Olmec” or “Earliest Preclassic Maya” may not be known until a comprehensive investigation is made of the site of La Venta.

The great pyramid of La Venta continues unprobed, withstanding all temptations to excavate its depths, despite the fact that it probably represents a transition from the non-pyramid-building Olmecs to the pyramid-building Preclassic Maya or their contemporaries as known by their works in both central and coastal Chiapas during early Mamom (Escalera) times. Whether the architectural distinction of La Venta’s single large pyramid represents developmental precocity on the part of the Olmecs or is the handiwork of a newly arrived people or influences can not be demonstrated conclusively until its constructional sequence is determined, but available evidence suggests the latter. For speculations upon the building of the La Venta pyramid, see Heizer, 1960:218-220.

An occurrence of post-Complex A pottery in the vicinity of the La Venta pyramid is shown by the offerings reported by Drucker, Heizer, and Squier (1959) and commented upon by Warren (Sanders, 1961:51). It more amply has been demonstrated by a thick refuse level of the period sampled by Piña Chan (collections, National Museum, Mexico City). Until more evidence of the Olmec role in the development of this pan-lowlands Mamom-like ceramic horizon is at hand, we will continue to consider it to be non-Olmec inasmuch as it has become traditional to think of it as Preclassic Maya. For the present discussion, therefore, we are using the term Olmec to identify ceramic complexes closely similar to those definitely associated with the peculiarly Olmec clay and stone architectural platforms and stone sculpture known at San Lorenzo and La Venta. This pottery is lacking the brown, red, or orange polished slips so typical of the subsequent horizon. We are talking about what we can with some assurance consider to be the artifacts (and activities) of the Olmec people, in what seems to have been a large southern sustaining area for the Isthmian “climax area” ceremonial centers. The term “Olmec” has a longstanding and universally recognized association with these ancient centers which obviates any need for new artificial synonyms (such as the recently proposed “Tenocelome”) to differentiate them from the rarely encountered Historic Olmecs.

Research still underway in vital areas of Chiapas, Oaxaca, Veracruz, and Tabasco is certain to clarify many aspects of the Olmec development and its spread across most of central Mesoamerica. Pending publication of the resulting data, it would be presumptuous to argue much about details. There is, nevertheless, sufficient knowledge at hand to substantiate the postulate of two somewhat separate and successive waves of Olmec influence affecting certain regions. The historical rather than locally developmental basis for an early and late distinction in the Olmec occupation pattern in southern Chiapas seems well supported by present evidence.

The Cotorra and Cuadros Traditions

The Cotorra ceramic complex as defined at Chiapa de Corzo appears to have made its appearance already fully developed out of an unknown but Ocós-like predecessor and to have culminated in a Jocotal-like complex, as Coe and Flannery (1967:68, 69) agree. The Cotorra components identified at Padre Piedra are lacking in some elements more characteristic of the early or seemingly more Ocós-oriented beginning of Cotorra and may represent an advanced development, which apparently does make a smooth transition into the Dili phase. If this is true, then we have at Padre Piedra close equivalents of the coastal Cuadros and Jocotal complexes. The
typological differences in the two regional manifestations are not great and might be characterized by a tendency to greater simplicity at Padre Piedra. Furthermore, the small and badly eroded nature of the collections from this site suggest that the apparent small differences might be even less were the samples comparable in quantity and quality.

The same pottery traditions typified the pair of site complexes under discussion, and included brushed and red-rimmed tecomates, red-and-white bichromes, incised black, black-and-white, and incised white (compare Coe and Flannery, 1967:Figure 8). Despite this similarity in traditions, however, the Padre Piedra complexes have a closer superficial resemblance to those of Chiapa de Corzo than with their coastal counterparts. This is not surprising, viewing the mountain range separating the interior and coastal regions. The only Padre Piedra ceramic technique which seems more closely linked with the coast is that of black and white controlled smudging: the oxidized whitish rims of Padre Piedra, Altamira, and San Lorenzo are unmatched at Chiapa de Corzo where Early Preclassic smudging was mainly restricted to vessel interiors and exterior oxidation was general rather than sharply differentiated.

It is noteworthy that for making their non-tecomate vessels, the early inhabitants on the later Early Preclassic time level throughout the general Isthmus region of Mesoamerica favored the use of a clay which would fire either black, gray, or whitish depending upon the degree of smudging in firing. Considering the prevalence of this early practice it may be wise not to overlook the possibly ancestral role of Monagrillo Incised (p. 108) or some related smudged contemporary from the south in the development of Olmec black pottery.

Significantly, it is as a black pottery ware that the Early Olmec ceramic presence is most obviously felt in both the San Lorenzo and Altamira-Cuadros phases (cf. Coe, 1966b and p. 108, Figure 80, g-s, this paper). This observation can be extended to El Trapiche in central Veracruz (Carcía Payón, 1966:75-79) and to parts of the central Mexican highlands (Coe, 1965b:5). The thickened-rim or everted-rim flat-bottomed bowl which is the outstanding early shape in this black pottery pattern also has rather close counterparts at Chiapa de Corzo. These are “White Monochrome,” flaring-wall bowls with either exteriorly thickened or everted rims (Dixon, 1959:5; Figs. 5, 6). Many of these examples are smudged dark gray to black on interiors, rims, and even exteriors. The cited Chiapa de Corzo Cotorra sherds include broad coarse-incised rims very much in the style of the Tlatilco vessel shown at the bottom of Fig. 80. How much time difference can there be between these various manifestations?

Casting of the Olmec incised black ware in an Early Preclassic setting creates problems, since its appearance anywhere in central Mexico has been accepted as one of the guide posts for the Middle Preclassic. However this Early vs. Middle problem may be resolved eventually (p. 55), the black pottery type seems of importance in any study of the spread of Early Olmec influence. At this writing it appears that incised black pottery bowls characterized the Early Olmec development and white ones the later, but the universality of this observation is subject to the results of additional investigation.

Another early Olmec trait at Padre Piedra is of course Monument 1 (Fig. 42). The disturbed situation of the shallow deposit beneath the fallen stela made it impossible to determine original associations and the Dili phase was somewhat favored due to its more abundant presence (p. 37). However, I am impressed by the fact that the well-depicted large object held in the right hand of the figure (Fig. 42, b) has exact counterparts in each hand of Monument 10 at San Lorenzo (Stirling, 1955: Pl. 15). Stirling describes this sculpture as an “anthropomorphic jaguar,” each hand of which grasps “a curious cestuslike object” (p. 14). Inasmuch as San Lorenzo sculpture is now believed to be entirely Early Preclassic, contemporary with the Cuadros and Jocotal phases (Coe, 1966b), this dating also seems most plausible for the monument at Padre Piedra.

Regarding the held object depicted on Monument 1 at Padre Piedra, it is of interest to note that there is an Olmec carved stone disc about 30 cm. in diameter now in the museum at Santiago Tuxtla, Veracruz, which shows a pair of hands, one holding an identical object over the chest. The device is shown
also on an Olmec jade figurine in the collections of the Cleveland Museum of Art and on various engraved celts (Coe, 1965a:Figs. 12, 50-53). Coe (op. cit:764-765) discusses these and other Olmec "knuckle-dusters." Portrait is most uniform and unequivocal. Repeated depiction of these objects held in the hands of Olmec figures accentuates their unknown qualities. They always are held in the same manner, with the hand grasping the handle from above and the heavy arched section resting against the back of the forearm. The objects possibly were either defensive, fending, or striking weapons for use in close quarter combat or in the mock combat of the Mesoamerican ball game. It is more probable, however, that they represent symbols of authority (a recent study of this Olmec ritual element has been made by Maria Antonieta Cervantes and will be published in a forthcoming issue of the INAH Anales).

The Jocotal and Dili Phase Overlap

The Early Olmec character of the apparent incised black ware horizon discussed above is beyond questioning. I also think that the somewhat later "incised white" types of La Venta and numerous Chiapas Middle Preclassic manifestations are so similar as to leave little doubt of their common Olmec inspiration. I had begun a compilation of a chart showing basic design elements appearing on early "white" wares from the Guatemala coast, Chiapas, Veracruz, western Tabasco, and the Oaxaca Isthmus (Juchitan) regions, but decided it to be premature for the reason stated above, namely that many recently excavated ceramic complexes are not yet described. Nevertheless, it was clear enough that there is so little deviation from a few basic element combinations that nothing suggestive of independence from the Olmec norms appears in these regions until the late Middle Preclassic. The basic Olmec white ware incised design is essentially a combination of straight and hooked lines, with a line of connected arcs or a single or multiple broad line excision commonly added. A pictographic representation is sometimes achieved. Crossed lines and hachuring are rare, as are circles, 'S' curves, rectangles, and triangles. The examples shown in Figure 91 of this Paper are reasonably representative of the entire Olmec gamut wherever found.

At Altamira, and Salinas La Blanca as well, the appearance of the more complex incised designs on white ware vessel exteriors denotes the late subphase of Jocotal (p. 118), and indicates at least beginning contemporaneity with the Dili phase at Chiapa de Corzo. This is viewed as a partial overlap only (Chart 1), inasmuch as the abandonment of both Altamira and Salinas La Blanca appears to have cut short the Middle Preclassic beginnings at these sites.

The frequently noted abrupt beginning and ending of occupational phases in our area is undoubtedly due to historical reasons beyond the normal recovery ability of archaeology and we find ourselves straining over the merest of clues. At La Victoria it is now recognized that "there was a thin layer of Jocotal material present... immediately underlying Conchas levels in at least some of the pits" (Coe and Flannery, 1967:67). Was this resumption of occupation at La Victoria the result of an expansion of that at Salinas La Blanca and elsewhere, or does it represent a dislocation in existing patterns? I suspect the latter, in view of the abandonment of Salinas La Blanca itself, as well as of Altamira, during the height of Jocotal development ceramically. Whatever the cause of this shift in occupation zones, the result at La Victoria was that the Middle Preclassic Conchas 1 complex was barely grounded in the more pan-Isthmian Jocotal tradition which represented the ultimate transformation of Cuadros pottery types via normal evolution. While the Dili phase evolved in Chiapas, Conchas at La Victoria experienced a relatively regional development, seemingly maintaining contacts with both the Huasteca and with coastal Ecuador which are not evident in central Chiapas. It seems to me that at this time of change from Jocotal to Dili and Conchas 1 ceramic complexes there was a choosing of sides manifest in much site relocation and a resultantly hardened regionalism thereafter. I have a suspicion that presently untraceable survivals of the early Ocós people as opposed to the Olmec intruders figured in this period of adjustment, but until more evidence is secured from the ground this must remain little more than an interesting speculation.
Evidence for Violence

It is difficult to tell how much the above-implied period of disturbance might be due to local, internal, conflict and how much to outside influence. Viewing the apparent evenness of developments across the greater Isthmus area, however, I tend to favor the latter, essentially historical, factor. Coe and Flannery have postulated a life period of only 50 years for the Jocotal phase, and both they and I note the appearance of the complexly incised white ware toward the end of this occupation. It has already been remarked that this is an area-wide phenomenon, and it is now emphasized that it was a rapid one as well. In both interior Chiapas and in the Soconusco it seems that the explanation is one of an arrival of a new if only slightly differentiated influence which we may term late Olmec. Since this brief period of relative ceramic innovation is followed very shortly by an interrupted occupation pattern, the obvious inference is that we are witnessing the far-ranging results of a distantly testified historical event. The candidate is whatever social catastrophe led to the temporary abandonment of San Lorenzo after the willful destruction of its monuments, and the subsequent perseverance of La Venta as the chief Olmec center (Coe, 1966b). Coe has subsequently suggested that something on the order of a palace revolt was involved, but the evidence suggests something more inclusive territorially if not much different in essence.

The Early Preclassic–Middle Preclassic or Early Late Olmec schism thus construed has been shown to have been a time of widespread cultural unrest accompanied by site relocation in the Soconusco and Isthmian gulf regions. At Chiapa de Corzo we have long had more concrete evidence of an upheaval between the early and late Olmec-related ceramic complexes. In my original discussion of the Cotorra phase (Lowe and Agrinier, 1960:7, 8), it is stated that in the vicinity of Mound 1

... a great secondary fill containing only Cotorra material to a depth of three meters was made against the bluff. ... The large amount of this fill earth, containing great masses of burnt clay frequently fired a brick red, indicates that a considerable habitation area was cleared off the adjacent plateau in a major leveling operation preceding the subsequent Dili occupation. ... These [Dili] deposits typically rest upon bedrock, suggesting both that well-drained habitation areas were needed and that the Cotorra debris had been previously removed. ...

Two facts stand out in the apparent clearing of the sub-Mound 1 area at Chiapa de Corzo. First, the 3-meter-deep lower mass of fill in the bluff zone contained no cultural material later than the Cotorra phase and relatively few sherds or other artifacts; it was not slowly accumulated refuse but fill resulting from a massive clearing operation. This is the zone sampled by Pit 50, the sherds from the lower levels of which were reported by Dixon (1959) and which later was cut through by the tremendous Trench 100 (note aerial view, Lowe, 1962a:Pl. 1). Second, in the entire excavated Mound 1 plaza area (including beneath Mound 1 itself), which included several hundred square meters dug to bedrock or sterile sand, almost no diagnostic Cotorra sherds were found, despite their exclusive presence in all of the lower levels of the several pits made off the edge of the bluff. From this I conclude that there was a disjunction in the occupation. Either there was a lapse of time after a Cotorra abandonment following which the Dili arrivals thoroughly cleaned the plateau surface for purely habitational (?) purposes or else an abruptly arriving Dili populace immediately displaced the Cotorrans and cleared off their accumulated debris out of spite or supposed necessity for their own occupation which we might assume had historical precedents favoring clean sandy surfaces. An alternative supposition is that the Cotorrans themselves removed all trace of their own occupation and threw it into the adjacent arroyo either in connection with an abandonment or as a ritual accompanying a marked change in ceramics. The latter is hardly plausible unless they were forced to do so by an arriving people or hierarchy bearing the changed ceramic complex with them. A shifting occupation within the confines of the site could be involved and it is not necessary to attribute change to outside sources—our tendency to do so is attributable more to external rather than to internal evidence at Chiapa de Corzo. Regardless of the actual explanation, the
known situation indicates a time of marked cultural change and heightened activity, if not surely of violence, at the close of the Early Preclassic but midway in what we recognize as an Olmec culture history.

Violence as an historical factor at Chiapa de Corzo may be taken seriously. In at least two later and possibly related instances it is plainly apparent in the archeological record. One very clear example is the destruction of the offering-laden Structure 5-H1 and its quite prompt rebuilding by a people with a new ceramic complex (Lowe, 1962a:9-12); this was part and parcel of the Late Protoclassic “transition” taking place throughout Mesoamerica during the first century or two of our era. A second evidence of prior violence was the finding of pieces of 6 apparently deliberately broken and scattered Early Protoclassic carved monuments in the foundations of a small Late Classic building (Lowe, 1962b).

We thus have reason for believing that historical events played their violent part in the establishment of the Dili-phase occupation at Chiapa de Corzo, and, we may suppose, in that of the related Later Olmec manifestations on the Pacific coast as well. That both developments should be a result of the same circumstances which led to the first violent quitting of San Lorenzo, the Early Olmec capital, is not overly speculative.

The Tlatilco Style Absence and Diffusion Gaps

No discussion of diffusion in early Mesoamerica can ignore Tlatilco and its unique trait complex which includes figurine burial, tall-neck jars or bottles, zoomorphic vessels, and certain other shape and decorative modes which effectively distinguish it from the Early Preclassic culture previously described. The Tlatilco chronology is confused, but there seems little doubt that the above traits were present in central Mexico soon after 1000 B.C., and that they were at least partially contemporary with the Olmec development at the Isthmus. For present purposes it is most important to observe that whereas Tlatilco demonstrates considerable Olmec influence, the Olmec heartland and its hinterland to the south received little or nothing from Tlatilco. This fact has important implications.

The Olmec civilization characterized ceramically by the flat-bottom bowl, teccomate, and excised-incised design styles, extended as a great swath over most of southern Mexico. Tlatilco and its few known closely related sites are essentially intrusions into the northwestern fringe of the Olmec area. We do not know the source of these intrusions. Parallels with Peru and Ecuador are frequently cited. Comparisons between the Chavin and Olmec cultures are sometimes made, but it seems more correct to compare Chavin and Tlatilco; if there was a cultural interchange between Mexico and Peru on the Chavin horizon it seems to have circumvented completely much of the central Olmec homelands including all of Chiapas. The greater presence of South American pottery forms in central Mexico than in the intervening Soconusco or Isthmian regions supports the contention arguing against group-to-group overland diffusion (Porter, 1953:91).

The restricted occurrence of the Tlatilco complex in Mexico and its failure to influence more profoundly the greater Olmec area, suggests quite strongly that Tlatilco is the result of an intrusive influence arriving from Pacific coast landfalls (Guerrero?), which reacted with an existing and already somewhat Olmec-influenced base culture. The result was certainly vigorous in terms of artifacts recovered from a few outstanding community burial concentrations, but it is difficult to discern any far-reaching effect on the development of civilization in southeastern Mesoamerica east of the Isthmus of Tehuantepec.

Evolution of the southeastern Mesoamerican later Middle Preclassic (earliest Preclassic Maya) which concerns us below (p. 73), shows no evidence of an expanding Tlatilco. Neither does the intervening and perhaps partly contemporary Late Olmec development during the early part of the Middle Preclassic. The only impressive Tlatilco-like complex known in Mesoamerica outside of central Mexico is, interestingly enough, in Honduras. According to Porter (1953:63-65), the pottery of the Copan caves (mostly "bottles:" Gordon, 1898) was "strikingly similar" to the Tlatilco complex. Equally
startling were other peculiarly Tlatilco-like traits reported in the Ulua-Comayagua drainage, including figurine burial, stirrup spouts, effigy vessels, D1 figurines, and numerous decorative techniques.

The apparent skipping of Guatemala and Chiapas by the Tlatilco style diffusion, whichever way it was going, and its stronger presence in Honduras and Peru supports the notion of sea travel with widely spaced intermediate land contacts. It is worthy of comment also that the Middle Preclassic scored chili grater bowls characteristic of Ecuador (Tejar phase), La Victoria, Guatemala (Conchas phase), the northern Veracruz coast and central Mexico do not appear in Chiapas except extremely rarely on the coast (Izapa). Furthermore, the negative painting typical of the Tejar phase and numerous contemporary site-phases in Ecuador (Meggers, 1966) is also found at La Victoria and Izapa during the Conchas phase and is very common in the Valley of Mexico at an equally early date (Paul Tolstoy, personal communication). It is found nowhere in either the Olmec climax sites or central Chiapas until Late Preclassic times (with the exception of an atypical sort of negative slip decoration noted on two Escalera phase vessels of Burial 6 at Chiapa de Corzo: Lowe, 1962a, p. 49). Neither negative painting nor grater bowls appeared at Altamira, which lacked the Conchas complex.

THE OLMEC Isthmian BLOCK

More site excavations may be needed before one can speak with confidence, but presently known trait distribution certainly indicates spheres of influence closely allying most of Chiapas with the Olmec climax region. The evidence strongly suggests that the greater Isthmus area from San Lorenzo on the west to Altamira on the east was an Olmec heartland which formed a stubborn cultural (and probably ethnic) block which clung tenaciously to its traditions and effectively resisted acceptance of outside traits between the 11th and 6th centuries B.C., broadly speaking. Even Izapa, as a major ceremonial center with strong exposure to its non-Olmec southern neighbors, deviated remarkably little from the Olmec cultural norm during this period. This pan-Isthmian conservatism was slow in dissolving in spite of contrasting developments taking place on its extremities in Veracruz, Oaxaca, and highland Guatemala. With only slight shifts in stylistic emphasis, the ensuing Zoquean and Lowland Maya Preclassic (Mamom-phase horizon) peoples perpetuated a uniquely similar ceramic panorama, at least, to a much later date.

Study of vessel supports will dramatize the above situation further; tripod feet were present in Ecuador, coastal Guatemala, highland Guatemala, central Oaxaca, and the Valley of Mexico about 600 B.C., but remained unadopted in the Olmec Isthmian homeland or its lowland Maya extensions until the end of the Preclassic when old prejudices started breaking down after about 250 B.C. Not uncuriously in view of the preceding observations, other typically Tlatilcoid traits such as stirrup spouts, spouted trays, annular base bowls, and, with extremely rare exceptions, zoomorphic vessels, appear for the first time at Chiapa de Corzo during the Horcones phase, after 100 B.C. The cultural upheaval and violence associated with the Early and Late Protoclassic transitional periods at Chiapa de Corzo accompanied a cross-current of external forces which materially ended the old Olmecan-pre-Maya tradition, as has been noted elsewhere (p. 70); for the remarkable history of Mound 5 at this time, see Lowe, 1962a:9-19).

The strategic consequences of the relatively conservative Olmec population blocking the greater Isthmus area for a pre-Christian millennium with one affiliation or another—Olmecan, Pre-Mayan, Zoquean—will become more obvious as more adequate field investigations are carried out in the regions stretching from Tehuantepec to Tapachula and from the Tuxtla of Veracruz to Campeche. Some of the probable sociopolitical ramifications of this rather fossilized Olmec block in Chiapas are discussed below. For the original roots of the Olmec unity, however, it almost certainly is necessary to look westward.
Already noted is the essentially Olmec aspect of the simple pottery shapes perpetuated at Tehuacan from 2300 to 900 B.C. during the Purron and Ajalpan phases; a similarly simple shape inventory is suspected for the pottery dating to and following 2400 B.C. on the Guerrero coast at Acapulco (pp. 62-64; Brush, 1965). It is entirely possible that the Puebla (and Guerrero?) site manifestations represent the western progenitors of a common Olmecan (or pre-Olmecan) stock which maintained a basic ceramic conservatism for 2000 years as it slowly pushed eastward. The esoteric Olmec art style which eventually was slapped onto largely existing pottery forms may have developed entirely within the Gulf Isthmian or Tuxtlas regions as many would believe, perhaps as a component of a tropical jaguar worship cult.

Whatever the origin of the Olmec ceramic art style and the sculptural tradition which accompanied it in the climax region, both were veneer to an existing and surviving simple pottery tradition which we may suppose represents an enduring conservative base population. Both the latter may, as we have just speculated, quite possibly be traced from Pacific coast beginnings in Guerrero to a final holdout centering around the great La Venta pyramid, from whence sparks from the recognizable Olmecan hearth ignited numerous regional cultures and shortly after which the home fires went out forever.

Rise of the Mesoamerican Dichotomy

During the closing phases of the La Venta Complex A ceremonial center, the arrival of some Tlatilco-like elements is noted. The exotic pottery shapes appearing in the La Venta Offerings 5 and 14 include a “bottle,” an effigy jar, and an open-spouted pedestal bowl (Drucker, Heizer, and Squier, 1959:162, 188). These form types are not represented in the other La Venta offerings, all of which conform quite closely to common Dili-phase characteristics at Chiapa de Corzo (p. 66). The esoteric La Venta vessels, as well as a few reported sherd similarities, undoubtedly do reflect stylistic influences arriving from central Mexico, since they are standard Tlatilco forms in the non-Olmec division. Such forms, as indicated previously, seem not to have penetrated farther south or east in any strength until a much later date. One can see the old dyed-in-the-wool Olmecs moving east across Tabasco and Campeche away from this foreign influence, into areas where the equally conservative and largely Olmec-inspired Mamom-related pottery traditions were to survive without radical change for yet another several hundred years.

To the southeast of La Venta, on the other hand, events took at least one, if only slightly different, certainly highly significant turn. Exotic vessels appearing in the Dili complex at Chiapa de Corzo included not only tall “chalices” which may parallel the Tlatilco tall pedestal vases, but also three-pronged incense burner stands which are entirely unique (Lowe and Mason, 1965:Fig. 8). The latter pottery forms have their closest (if poorly identified) relationships to the south, in eastern Guatemala (Borhegyi, 1950; 1951) and El Salvador (National Museum coll.), and are completely unknown in the north at this early time. These earliest known modifications of the common cylindrical Olmecan “incensario” were the beginning of a long development of triple protruberances which was to survive into the Classic period in both central and coastal Chiapas as well as in highland Guatemala (Borhegyi, 1956; Lowe, 1965); the general trait was adopted in Veracruz and at Teotihuacan by the Early Classic.

It is not improbable that the early adoption of the peculiar incense burner type in the southern sector only of the Olmec domain signifies a beginning of divergence in religious practices. This, with the Tlatilcoid presence at La Venta, indicates changing spheres of influence during the early Middle Preclassic which presaged the not-far-distant collapse of the central Olmec ceremonial centers. By Late Preclassic times these centers were to find themselves in the unstrategic position of being intermediate to the developing Mesoamerican cultural dichotomy of east and west (usually thought of as south and north, and oversimplified as Mayan and Central Mexican), which was to predominate throughout the remainder of prehispanic history.

It may be assumed that the Gulf side of the Isthmus proper became something of a no-man’s land about the beginning of our era, for it seems never again to have sup-
ported a major ceremonial center. We may further assume, I think, that certain Olmec hierarchical families had early established themselves in such geographically disparate centers as Tres Zapotes, Cerro de las Mesas, Chiapa de Corzo, Izapa, Kaminaljuyu, Chalchuapa, and undoubtedly as well in certain of the large mound sites in the lowland Maya regions of southern Campeche (Andrews, 1943:49-51) and northern Peten. With little question, these transplanted (Mixe-Zoquean?) Olmecs survived the Late Preclassic disappearance of the central Olmec hegemony. We may suppose that they continued on to figure in the ascending Popoloca-Totonacan, Zoquean, and Mayan dynasties which developed on the respective peripheries of that erstwhile hegemony (see Vogt, 1964:396).

The Izapa Situation

Following the end of the clearly Olmec cultural horizon, at about 600 B.C., the subregional developments became steadily more distinctive. Some centers such as Chiapa de Corzo and Mirador show an apparently normal transition from the early to late (Dilí to Escalera) levels of the Middle Preclassic, but others, including many smaller sites, seem to have collapsed. As examples of the latter, Padre Piedra and Altamira were abandoned completely, as was Salinas La Blanca, and most probably La Victoria also, for Izapa evidence suggests that there is an undetected hiatus between the mixed complexes labeled Conchas 1 and 2 at that site. At Izapa the new non-Olmec (Mamom-like) ceramic traits come in above the Olmec-related (Conchas 1) occupation, but there is good evidence of something in between, including transitional pottery and figurine types which accompany the first building of pyramidal clay platforms (the Duende phase: Ekholm, in press). The architectural development may parallel similar activities suspected, but uninvestigated, at La Venta (p. 66). A number of exotic traits in the pottery complex, however, appear to be transitional survivals of an Ocós and other Central American traditions.

Both ceramic history and sculptural typology (Miles, 1965) may thus indicate a development of the distinctive Izapan art style from combined local Olmec-related and southern highlands antecedents. The latter area includes southern Guatemala, El Salvador, and western Honduras, and it is safe to assume that the Lowland Maya area to the north also combined influences from these regions with an underlying and more essentially Olmec-derived base culture. From the point of view of probable antecedents, in other words, there is little reason to expect much difference in the resultant Maya civilization, north or south. When the “Izapa Civilization” (Coe, 1962:99, 100) is credited with having bridged the gap from Preclassic to Classic Maya, therefore, it seems logical to counterclaim that contemporary developments more directly transitional to the Lowland Maya civilization must exist in the northern Peten or southern Campeche.

Regional differences within the greater Maya area must have become steadily less subtle as they moved beyond the Middle Preclassic points of most widespread and uniform contact. That they rarely have been clearly defined is due to an extremely limited archaeological sample. Our regional Preclassic and Protoclassic knowledge is so poor (and practically zero in the northern Peten, southern Campeche, Quintana Roo, and Lacandon Forest of Chiapas), that it is futile to argue the true significance of Izapa in Mesoamerican development. Its one obvious importance for the moment is that it provides a known example of what may have been a characteristic transitional evolution from Preclassic to Classic cultures. Also, as the largest ceremonial center known anywhere on the Pacific coast of Mesoamerica prior to the spread of the Mexican-influenced Middle Classic culture, Izapa’s influence should not be underestimated. Izapa not only shared abundantly in the Early Preclassic cultures sometimes better defined at smaller sites, but apparently it became a prime manufacturer in later times of Plumbate ware in its earlier or San Juan varieties (T. Lee, in preparation).

Viewing the fact that Plumbate ware from the Soconusco eventually became the most extensively traded pottery in Mesoamerica, it is not difficult to accept a diffusor role of equal importance for the region in earlier times. But, regarding relative Protoclassic influence upon the Maya, it seems that obvious lacunae prohibit serious speculation. It has
been suggested that the most portentous approach to Protoclassic problems is that of the adequate investigation of Holmul itself, where the Protoclassic nature of Holmul I was first recognized (see discussion by Willey and Gifford, 1961). A return to Holmul and its related site zone in northeastern Peten and western British Honduras seems a first order of business for Mayanists, in spite of the common supposition that it was mainly a receiving area for diffusion and migrants from the southern highlands.

From a diffusionist point of view, the most significant aspect of the Middle Preclassic abandonment of Altamira and many other small coeval sites surrounding the Izapan center is that this event and its aftermath literally resulted from the cut-off of cultural interchange with the north and west. Artifactually, from this time forward the Soconusco remained with few exceptions within the Central American zone of influence. Whether this situation resulted from external forces or merely from the ascendancy of Izapa as an important regional center is debatable, but the southern alignment is unquestioned. This was in sharp distinction to inland Chiapa de Corzo and Mirador which enjoyed wide-ranging Mesoamerican trade during the Late Preclassic and must have maintained tight relationships with the Peten and its northern neighboring regions. Izapa’s developing Protoclassic art style also may have had some relationships with the southern Gulf Coast as well as with the Yucatan peninsula across central Guatemala and western Honduras, almost surely skipping northern highland Guatemala entirely (Adams, 1966) but the contacts must have been infrequent or on a restricted scale. After the Middle Preclassic period the Soconusco aligned with southern Guatemala and El Salvador and was not to acknowledge ceramic influence from the northwest again until Middle Classic times when Teotihuacanoid traits began to be accepted in some strength. Significantly, however, the latter development followed a period of abandonment and only partial reconstruction at Izapa (Lowe, 1965:61). This suggests that the Izapeños never did accept willingly northwestern influence once they had rejected it, either preferring or being forced to abandon most of their ancient capital at the time of Teotihuacanoid dominance.

CONCLUSIONS

Chronological Clarifications

The most satisfactory contributions of the brief investigations reported in this paper have been of a chronological nature, and they are threefold. Perhaps of first importance, the Pacific coast Barra phase was defined at Altamira on the basis of 4 pottery types found stratigraphically earlier than the Ocós-phase types. This, therefore, is the earliest ceramic complex known in Chiapas, considered to go back to at least 1600 B.C. The Barra pottery types, in spite of seemingly perpetuating early Mexican stone vessel shapes, seem to have had principally a southern inspiration, both technologically and artistically; they give evidence of long-distance diffusion from lower Central America and northern South America. Regarding such diffusion, it has been noted also that even in our present sorry state of knowledge, Honduras was probably a more important bridge between the earliest South American and Middle American sedentary culture developments than was either Guatemala or Chiapas. Careful extensive research in that area seems a must if we wish to understand the roots of cultural growth in eastern Mesoamerica.

As a second contribution to culture history reconstruction, the Altamira Cuadros-Jocotal and the Padre Piedra Cotorra-Dili ceramic complexes which make up the bulk of the studied pottery sample were shown to be so similar to those from other sites known both far and near over southeastern Mesoamerica beginning at about 1000 B.C. that they must all conform to what may be termed basic Olmec horizons. These manifestations of the Olmec pottery tradition emphasized stereotyped incising and excising patterns, tecomates, smudged black-and-white flat bottom bowls, red on white decoration, and a lengthy evolution of white-slipped bowls and
jars. They are thought to represent an Olmec population block astride the Isthmus which resisted exterior influences for about half a millennium. It is further suggested that this core population slowly expanded eastward across the Yucatan peninsula either to form or at least to share in the formation of equally conservative Preclassic Lowland Maya communities; little or no excavation has been conducted in the regions central to this movement.

Some common territorial unity, political or religious but basically ethnic, may be theorized to explain the arrival and survival of Olmec traits over long periods of time extending across central Mesoamerica, as well as for resisting non-Olmec traits in the definite southern Olmec common culture area within the greater Isthmus territory. Studies, still largely unpublished, of projects now underway in various regions of the Early Olmec cultural domain will demonstrate more fully the pervasiveness of the Olmec tradition beginnings on the Early Preclassic horizon. Chiapas, with its perhaps unequalled number of sites relating to this early period, was an important, and perhaps the most substantial, sustaining area for the Olmec “Mother Culture” as it frequently has been described.

The advanced ceremonial orientation of the Olmec community as already fully developed at San Lorenzo by the Cuadros phase (Coe, 1966b:4-6), gives ample basis for supposing the loyalty of a relatively large population, including that scattered throughout the southern Olmec domain herein delimited in a preliminary fashion. It must have been the allegiance or subservience and very possibly even tribute of this rather extended territory which made possible the fantastic ceremonial center which San Lorenzo tradition surely was, with its carved stone monoliths, aqueducts, and complex layout of built-up platforms established in its strategic position on the Isthmus before 1000 B.C.

A third contribution of the Altamira investigations was that their combination with those made at Salinas La Blanca and La Victoria formed a more complete Soconusco chronology which enabled an ordering of the much-disturbed Izapa Early Preclassic ceramic typology. Izapa was the major Preclassic ceremonial center known for the Soconusco, and the importance of understanding its developmental history preceding the rise of obvious ceremonialism is evident. Even at Izapa, however, there is no evidence for platform construction or stone carving until after the end of the clearly Olmec-related occupations (that is, after Conchas 1). The reoccurrence of this pattern supports the idea that Pacific coast religious and/or civil allegiance was to the Isthmian Gulf Coast centers throughout the Early and Late Olmec periods.

Minor Olmecan ceremonialism may have been associated with such Olmec monuments as that found at Padre Piedra and elsewhere on the Pacific coast, as well as with clearly Olmec carved stone boulder reliefs reported from the same regions. In almost all such instances general Cuadros-level ceramics are found in association (Navarrete, in preparation). The widespread similarity of iconography and pottery thus both indicate that there was a strong central influence and that there may have been numerous local shrines but few Meccas (see below, pp. 78-79).

The Fluid Nature of the Communities

A final culture-historical contribution of this Paper is the demonstration that both Altamira and Padre Piedra were villages or hamlets with great interior mobility, having had small populations changing dwelling locale periodically, shifting back and forth from house site to house site over the centuries. This seems in keeping with a definite Mesoamerican lowland pattern; apparently the abundance of reasonably suitable land for both agricultural purposes and settlements encouraged frequent moves seeking slightly “greener pastures.” This seems not to be a particularly Mesoamerican tendency, either, since ethnographers have noted elsewhere the same custom of tropical villages to change position as the populated area becomes fouled and undesirable. Speaking of the Papuans of the Western New Guinea Highlands, Pospisil makes the following comment (1963:43):

A Kapauku village may be regarded as a permanent settlement in the sense that it persists for a long time in the given area. However, the village has a tendency to “move” slowly in one direction or another. As the place becomes too smelly and the houses old and dilapidated, the Kapauku
build new structures, often using the old material, on nearby “clean sites.” In exceptional cases a village may be transferred in an abrupt and organized fashion from one place to another.

It has become painfully obvious that no one midden, mound, nor a single grouping of mounds at a given tropical site can be expected to produce an adequate site history, much less an accurate regional or area history. The excellent results of the small Coe and Flannery study of the neighboring Guatemala Pacific Coast ecology (1964; 1967) form a relatively adequate local picture, though the largely marine orientation of their zone contrasts with the non-marine adaptations of the more typical Mesoamerican villages we have discussed herein. It also should be reiterated emphatically that both La Victoria and Salinas La Blanca would produce additional cultural and chronological data of considerable importance if their greater site-areas were sampled (see p. 123). There is a real possibility that the portents of subregional discontinuities and horizontal cultural disconformities versus purely “chronological” ceramic changes have not been explored sufficiently.

The Lowland Village Material Culture

About material culture progress during the approximately 1000 years of occupational history of our early village sites we can say rather little. Technologically, we have a beginning on a high plateau, a rise in ceramic sophistication to a Preclassic peak within a few centuries, and a lowering in quality and a stereotyping of styles from that point forward to accompany a population climax abruptly ended by a complete abandonment of both villages within the centuries between 800 and 600 B.C.

Pottery was excellent when it first appeared in the Barra phase, and shortly, during the Ocós phase, achieved a competence rarely bettered or even equalled later in the region. So was the carving and polishing of hard stone well-perfected, if rare (and imported?), before the end of the Early Preclassic. Fine woven (probably cotton) fabrics are evidenced by impressions on pottery of the Ocós phase and we can assume that such functioned in clothing. Figurines, particularly human torsos, were skillfully modeled, but are shown nude.

Cylindrical clay stands with central perforations (cf. Fig. 20 and Tables 10, 14) appear at Altamira from at least as early as the Jocotal phase. I have assumed these to be incense burners even though others would interpret them as stoves, stools, or pot-rests (see further comment opposite). Smoke-blackened interiors suggest use as charcoal-holding braziers, but whether for toasting fragrant copal or savory tortillas or for roasting rodents, who can say?

Weapons or chopping tools are lacking in the record at either Padre Piedra or Altamira (except for one surface find), as indeed they are throughout most of the Preclassic periods on the Pacific coast and in central Chiapas. The common usage of non-lithic weapons and implements must be assumed. Coe (1965a: 764; Fig. 49) has shown that the “Olmec arsenal appears to have been limited to clubs” These war clubs, presumably made from hard fine-grained wood, were sometimes “paddle-shaped” and pointed in such a manner that they would have been effective thrusting as well as striking weapons. Both the typical Olmec helmet and the “knuckle-dusters” described above (pp. 67-68), an example of which appears on Padre Piedra Monument 1, are suggested as defensive weapons against the use of such clubs (ibid.) The “knuckle-dusters” must also have been of hard wood, since an extensive inventory of Mesoamerican ballgame paraphernalia, including a wide variety of “hand-stones,” shows no close parallel to the Olmec knuckle-duster (Borhegyi, 1961:Figs. 1, 3, 7, 8).

For capturing animals, of which there is small evidence in our excavations, reliance was probably placed upon nets, traps, and clubs (cf. Coe and Flannery, 1967:101). Bernal Diaz (1955:482-488) mentions that the hunting weapons used on the Grijalva River at the Conquest were wooden spears with fire-hardened tips, slings, nets, and clubs, none of which would survive in our archaeological record.

No meaningful chipped stone assemblage was found at Padre Piedra, but at Altamira small chips and flakes of obsidian were a prominent component of the Barra and Ocós
phases as known from Mound 19 (they were rare in the 1963 excavations in the southern part of the site representing mainly post-Ocós occupation). We have suggested that these small rather nondescript chips were utilized in domestic handicrafts and possibly for manioc grating. For reconstructing the remainder of the original tool inventory, I think that we can fairly draw an analogy with lowland Colombia, where Lathrap (1966:924) thinks that

... these undifferentiated, crude stone tools are the imperishable fraction of a rather evolved technology in which perishable materials were used in making the projectile points, more refined cutting tools, and perforating tools. Cane, palm wood, long bones, fish jaws, sting ray spines, and thorns were the typical materials used for such tools over much of Lowland South America at the time of the first European contact, and there is every reason to suspect that this is a very ancient pattern of ecological adaptation.

Perishable materials were also used for constructing the dwellings in these small communities, housing farming people who cultivated the nearby lagoon margins or river-bottom lands. Twice yearly cropping of these moist terrains may have been supplemented by wider-ranging wet-season plantings, at least with the obtaining of suitable maize varieties. This would have provided an agricultural cycle of a most dependable nature, not dissimilar to the combination of wet season hillside milpa and dry season bajío farming practiced on the floodplains of the Grijalva River and its tributaries to this day in central Chiapas. A third crop is secured from the bajío land between the June and October flood crests. The bajío system is that of natural irrigation, with annual or biannual silting perpetuating soil fertility. Padre Piedra overlooks an unusually broad floodplain (Fig. 43), these in general being more narrow; all are subject to periodic cutting action of the rivers.

The planted crops of the Early Preclassic peoples in these Chiapas regions are thought to have been supplemented by the seasonal gathering of fruits and seeds, particularly the abundant palm nuts. The latter practice is suggested by the frequent occurrence of stones useable as pounders (the use of similar hammer-stones and anvils for cracking palm nuts is discussed by Reichel-Dolmatoff for the early Puerto Hormigo phase in Colombia -1965:56; Fig. 12).

Inferences of Non-material Culture

A competent study of Preclassic community life, on any level, is still much to be desired. The problem of non-material culture traits, and particularly of ceremonialism or religion, in small village communities such as Altamira and Padre Piedra is one about which we can say very little for certain. No ceremonial construction is apparent. Burials in our small excavations were very few and, unaccompanied by offerings, suggest no social or religious values other than that the dead seem to have been buried at some depth and therefore were either feared or respected. Charcoal braziers or incensarios as noted above, are confused with possible “clay-seat” or “pot-rest” functions, and a discussion of their societal role, given their generally mound-fill proveniences (except in Trench 19-B, Table 10), would be a moot exercise. Perhaps their greatest significance for present consideration is their common appearance in similar form at La Venta (Drucker, 1952:121; Fig. 40, c) and San Lorenzo, re-emphasizing the close cultural relationship between the Olmec ceramic inventory on the Pacific and Gulf coasts. Other pottery shapes and decorative designs also seem to indicate that our villages were partaking of a culture and religion common to a greater Olmec territory and, if so, observations gained from the ceremonial centers of this civilization are locally pertinent in proper perspective.

It has been mentioned in the appendix (p. 124) that the clay figurine heads from Altamira Mound 19 approach stylistically the jade and serpentine ones found in La Venta ceremonial offerings. The Padre Piedrans had a more obvious participation in Olmec religious ideas, including a regard for the jaguar “rain god” and were-jaguar infants (Coe, 1965a:763, 765). Though some local personifications may have been different, Padre Piedra Monument 1 (Fig. 42) shows a small figure apparently wearing a jaguar mask in suppliant attitude kneeling beneath a “ceremonial axe” (Navarrete, 1960:11) or “knuckleduster” held by the much larger figure standing over him.
Regional religious beliefs need not conform to cultural or even social sameness, on the one hand, but on the other hand neither does the absence of stone sculpture rule out the presence of the Olmec cults. Even at such sites as Altamira which completely lack stone monuments, the ceramic complex, including stylized excised designs, is so close to that of San Lorenzo on the Cuadros-Jocotol level that it seems justifiable to suppose that a common religious ideology was being shared also. Both the ceramic and sculptural traditions of Izapa show Olmec antecedents, and definitely Olmec carved stelae and reliefs have been found elsewhere clear across the Chiapas Pacific coast (Coe, 1965a:766; Navarrete, in preparation).

If abundant massive stone sculpture was the criterion, there were indeed very few ceremonial centers during any given period within the greater area controlled by the Olmec or Olmec-derived cultures. First, San Lorenzo, and possibly La Venta, dominated during the Early Preclassic peak. La Venta seems to have reigned alone during the Middle Preclassic. Tres Zapotes, Izapa, and Kaminaljuyu followed as major regional centers in the Late Preclassic and Early Proto-Classic periods. As indicated previously (p. 66), the role of La Venta during the Late Preclassic is undetermined, but certain of its elaborate monuments relate stylistically to this period. The finding of fragments of 6 apparently Early Proto-Classic carved stelae at Chiapa de Corzo (Lowe, 1962b:193-194), with the probability that others were destroyed, indicates that this was a fourth major regional center which served the Central Depression of Chiapas during that period of heightened ceremonial activity. Finally, Cerro de las Mesas, Tonala, and Cotzumalhuapan assumed the shifting banners of regional supremacy during the Late Proto-Classic and maintained them into or beyond the Early Classic period.

The persistence of a single major ceremonial center over a given period of time in an extensive region certainly implies regional ascendancy for that center, and, when accompanied by a far-ranging symbolic art style, supports the argument favoring the functioning of an organized religious hierarchy with sociopolitical consequences. A perhaps slightly less formal but equally key civilizing role is assigned to religion in the New World by Willey (1962:9, 10) as follows:

I return, again, to the great styles, to Olmec and Chavin, for which there is no counterpart from Honduras to southern Ecuador. I have suggested that they, in themselves, are but the symbols for the religious ideologies of the early farming societies of Mesoamerica and Peru. I would further suggest that in these ideologies these early societies had developed a mechanism of intercommunication, a way of knitting together the smaller parts of the social universe of their day into a more unified whole than it had heretofore been or would otherwise be. In a way similar to that of the interchange of objects, plants, and techniques which had previously prepared the village agricultural threshold, the sharing of common ideologies led to the threshold of civilization by enlarging the effective social field. By this enlargement more individuals, more social segments, more local societies combined and coordinated their energies and efforts than at any time before. Regional differentiation in culture is an important precondition to cultural development insofar as differences contribute to the richness of the larger order, but without union the different parts remain isolated and in danger of stagnation. There are various ways by which man has promoted such union, but mutually and deeply held beliefs seem paramount. Such belief systems were, I think, the distinguishing features of the Mesoamerican and Peruvian societies of the first half of the First Millennium B.C., and the great Olmec and Chavin art styles are our clues to them.

Recognizing that other factors are involved, however, Willey (ibid.:10) cautions that he is... hesitant to advance my thesis of an early, prevailing, multiregional ecumenical religion in either Mesoamerica or Peru as a sole cause of Later civilization greatness. I ask, rather, that such phenomena... be considered as a step in the process....

The amazing Classic period proliferation of stone monument-raising ceremonial centers in the Lowland Maya area may have come about as an outgrowth of Olmec religious antecedents, but the development seems to have demonstrated a departure from the Olmec pattern of single centers for large regions. It probably shows an increase in hierarchical control, possibly paced by an increase in population density. With a substan-
tial ceremonial complex located within a half-
day’s walk of most Maya farmers’ fields (Bul-
lard, 1964:281), the Classic Maya populace
surely found its activities more constantly cir-
cumscribed than did their Olmecan prede-
cessors. Most of the latter needed a pilgrimage
of many day’s duration to arrive at their par-
ticular holy city.

Recommendations

Our inability to say more about the greater
society to which our investigated Chiapas
villages belonged is the result not only of the
impoverished catalog of materials surviving in
the soil but of methods used to recover and
describe it. The excavations at Altamira and
Padre Piedra were perhaps too typical of Pre-
classic investigations made throughout Meso-
america: attempts to recover a lost civiliza-
tion via a pitiful few small pits and trenches
made into already survival-poor refuse or con-
struction debris. We end up dealing with what
may be only a fraction of one percent of the
original cultural inventory for a given com-

The Altamira and Padre Piedra excavations
perhaps were less typical—and in a sense
less productive—in that they were carried out
in zones of shallow refuse of a sort not usual-
ly chosen for archeological testing in Meso-
america. Nevertheless, these shallow sites are
typical of their era and area, and their in-
vestigation is imperative to an understanding
of what was going on in such villages which
may have accommodated the bulk of human-
ity of the period.

At Padre Piedra it proved unfortunate that
Green has been unable to carry out a planned
analysis of the apparent horizontal strati-
graphy in Trench V which might have pro-
duced important results regarding village oc-
cupation. Although we field tested widely at
the sites and gained an idea of population
density or consistency in general terms, we
lack the critical data for community appraisal
which might be forthcoming from compara-
tive pottery shape or artifact analysis by
dwelling loci at given time periods.

If the Altamira and Padre Piedra excavations
are disappointing in terms of widest possi-
ble cultural significance, there is at least a
partial future remedy: truly extensive sheet
evacuation of promising site zones, followed
by functional analysis of the material de-
signed to leave few gaps in the possible re-
coverability of archeology. Finer vertical
stratigraphy will be worked out where deeper
or better assorted deposits lie, and can be
chosen for that reason. But to find out what
went on in a village, as in a ceremonial center
for that matter, the excavator must be pre-
pared to uncover completely selected living
areas—or ceremonial areas as the case might
be.

The early Mesoamerican community needs
to be defined, not only through sampling all
of its constituent parts, but by providing as
well complete details of some of those parts.
With the possible exception of a few recent
projects, most attempts at community study
bog down in the chronological and typological
avenues and never arrive at total community
appraisal. Difficult as it may be to achieve,
the crying need in Mesoamerica is for true
horizontal archeology, recovering cultural
units intact and then properly comparing
community components, including their trash.
Furthermore, if we wish to talk intelligently
about regional development and inter-regional
relationships, comparable and complementary
sites at reasoned intervals need be selected
and sampled in a manner that will make ob-
servations meaningful.

Unfortunately, if grand aspirations for re-
constructing culture history and for defining
culture processes are to be realized, they will
have to be preceded by earth moving and
comparative intra-site and regional functional
analysis on an equally grand scale.
APPENDIX

RESULTS OF THE 1965 INVESTIGATIONS AT ALTAMIRA

Gareth W. Lowe

The test excavations of Green at Altamira in 1963 disclosed the predominantly Early Preclassic dating of the most widespread occupation of this site which we suppose to have constituted a dispersed agricultural village or hamlet. The system of ceramic analysis, however, as well as the mixed mound fill sampled, failed to provide a clear-cut stratigraphy. In an attempt to improve our knowledge of both the Altamira cultural sequence and the ceramic typology, six new excavations were made by myself during April, 1965, in two additional mounds (19 and 20), and one larger trench was dug at the lagoon edge of Mound 1. These new excavations, although still small and producing only 5,171 sherds suitable for study, fortunately have supplied material adequate to clarify rather well the two problems motivating the work.

From the beginning, the Altamira project had research ends other than mere artifact recovery (p. v) and it was not our expectation that we would make ceramic history. In the pottery description we wished to avoid setting up an individual pottery sequence with another long list of type names that would add to and possibly conflict with the existing typology at not-far-distant La Victoria in Guatemala (Coe, 1961) or the expected typology eventually to be established for the long pottery sequence at Izapa, only 22 miles away. It was our simple intention to identify the Altamira occupations via the existing Soconusco pottery sequence. The problems resulting from the consequent decision to adapt the La Victoria typology to Altamira have already been discussed in the preceding report (pp. vii, 2-4, 14-15). Altamira pottery type descriptions accordingly were kept brief, with an allusion to other and closer analogies usually included.

The fine-phase chronological differences accounting for the failure of the Altamira pottery to correspond well with that of La Victoria became apparent with the analysis of the material from Salinas La Blanca, a neighbor-site of La Victoria (Coe and Flannery, 1967). Very similar Early Preclassic pottery types also showed up at Izapa, usually in early mound fill. This latter pottery recently has been described in terms including the Salinas La Blanca typology wherever definite equality was shown by comparison with a type sample kindly provided us by Coe (S. Ekholm, ms.).

The following typology of the 1965 pottery from Altamira, therefore, was prepared with a more adequate sequence at hand from the coastal Guatemala sites, plus the typological description of a relatively large sample of related material from Izapa. In addition, the internal sequencing at Altamira was much improved, thanks to a fortunate sampling of “pure” deposits in Mound 19 and a retesting of the Mound 1 deposit. With these advantages it is now possible to describe for Altamira the very satisfactory, if still scanty, content of the earliest ceramic sequence known for Chiapas.

The importance of the final Altamira sequence and its interpretations have been discussed in the preceding section. The Appendix is primarily a description of the 1965 excavations and of the material and chronological clarifications that they produced.

This report has been prepared in the field simultaneously with an on-going archaeological salvage program of considerable urgency, and some over-brevity may have resulted. In the preparation of illustrations it is a pleasure to acknowledge the assistance of Ramiro Jiménez, artist, José Núñez, draftsman, and Mario Vega, photographer. Sr. José Gabriel Camacho has aided with the manuscript. I am especially indebted to Jorge Nuricumbo and Alejandro Sánchez for their aid in managing the field work.
The 1965 Excavations

Test pits and stratigraphic trenches were excavated in Mounds 1, 19, and 20. Emphasis was placed upon Mound 19, a very low rise about 150 meters west of the Altamira ranch buildings (Fig. 68).

MOUND 19

Mound 19 is less than a meter high, occupying the eastern edge of a very gentle contour. At the time of our excavations it was occupied by a family living in an old thatch house (Fig. 69).

The initial Trench 19-A, 2 x 2 m. square, demonstrated the very early and apparently undisturbed nature of the west side of the shallow Mound 19 accumulation. It sampled a deposit with close similarity to the Ocós phase, the earliest known Guatemalan cultural manifestation on a pottery-making level. Thus encouraged, additional trenches were laid out to investigate both the summit and near and far slopes of the entire raised habitation area. The location of the trenches was guided somewhat by an existing 10-m. grid of recently dug holes intended to receive avocado seedlings; each of these pits was about 60 cm. square and of slightly greater depth. They had been dug over the eastern and southern halves of the mound area up to and beyond the drainage canal. Examination of the back-dirt and walls of these pits gave a good idea of sherd distribution in the surface levels. Sherds disappeared altogether in the low area around the northern terminus of the canal, but large sherds of very uniform aspect were especially abundant on the slope midway between the mound and this same canal section.

Trench 19-B was dug in the area of sherd concentration on the east, but reached sterile subsoil at the shallow depth of 80 cm. It

Figure 68. Map of Altamira Area Investigated in 1965
tested a homogeneous deposit related to the close of the Jocotal phase of Salinas La Blanca, as detailed below. Trenches 19-C through H were then confined to the higher parts of the mound. Trenches 19-C, E, and F, each 3 m. wide and adjoining each other, were finally lumped for analysis and are hereinafter referred to as Trench 19-CEF. This was dug in successive sections up the east mound slope, hoping to encounter a bigger sample of the early undisturbed deposit found on the west side of the mound.

Trenches 19-A, CEF, and D had all encountered in their lowest levels a dominance or relative abundance of polished grooved red and incised plain wares. This rather delicate pottery was obviously closely related to the Ocós phase. The purest sample was that from 19-A, but it was very small both as regards total pit sample (57 rim or decorated sherds) and individual sherd size. Trench 19-D produced a slightly larger total sample (91) but a less clear distribution. Even here the early sherds were tiny and scattered. The 19-CEF sample of the earliest types was greater but already mixed (as compared to the “purity” of the lowest 19-A and D samples). A bigger collection from an A-like deposit was desired, and it was deduced that this should be found as close to the center of the mound as possible. After making a satisfactory small probe pit into an existing planting hole (labeled 19-G but unrecorded), 19-H was laid out on the south edge of the present dwelling area. It was dug in 10 cm. levels to provide maximum control.

The ceramic succession recovered in Trench 19-H confirmed in greater abundance (783 sherds) and improved clarity that indicated in 19-A and D. Comparison of the results from all 5 of the Mound 19 trenches permitted reconstruction of the cultural sequence given below. No or little redeposition seems to be indicated, particularly for Trenches 19-A, B, D, and only in the upper levels of H. Trench 19-CEF shows a mixture at bottom of what we conclude to be Barra, Ocós, and Cuadros-phase sherds (due no doubt to an originally very shallow deposit of the earlier types), but otherwise shows a nor-
mal growth pattern unindicative of any deliberate addition as building material.

Considering Green's experience with the only slightly larger mounds to the southwest which showed artificial accretion almost throughout, the finding of a largely undisturbed accumulation in Mound 19 is a fortunate and much desired development. The sherd frequencies in the lower levels are still very low, but probably are the best that can be expected at a site typified by shallow deposition everywhere.

MOUND 20

Mound 20 is a low rise approximately 60 cm. high about 250 m. southwest of Mound 19 (see Fig. 68) and about twice that distance north of Mound 13. The advantages of living on even slightly elevated ground resulted in this mound having served as the building site for a former owner of a cattle hacienda operated in the tall forest and savannah land from which the Altamira cotton ranch was taken. The mound in 1965, however, retained only the fruit trees (oranges, mangos, coconuts) remaining from the recent occupation. It was an oasis left in the bare plowed cotton fields surrounding it on all sides.

A single 3 x 3 m. pit was dug in Mound 20, Trench 20-A. The natural stratigraphy here differed in no significant respect from that typical almost everywhere at Altamira: a grayish topsoil followed by light brown sandy loam and ending in fine yellowish sandy subsoil. The seven 10 cm. levels contained almost none of the Ocós-like sherd found in Mound 19. The Trench 20-A material apparently represents an almost pure Jocotal occupation. As such, it is an excellent confirmation of certain observations made in Mound 19, and later in Mound 1.

MOUND 1

The situation of Mound 1 has been described (pp. 4-8). It is actually a slightly elevated point 60 cm. high on the north end of a long meandering hillock whose surface is only 1.20 m. higher than the bottom of adjacent dry lagoons (see Figs. 2, 3).

The most productive of the six 2 x 2 m. pits dug by Green in Mound 1 was N14-E14, placed at the northern foot of the mound at the edge of the dry lagoon. Of the 1,131 sherds from this pit, the 35 from the lowest three levels within the sandy subsoil were outstanding for their unweathered condition (p. 6). These seemingly evidenced an undisturbed pre-mound occupation. In 1965 a new trench (1-A) was dug just to the east of N14-E14 in hope of securing an adequate sampling of this submound deposit (for general location see Fig. 4).

Trench 1-A was successful in its objective and reached the unexpected depth of 3 meters, twice that of its predecessor. This additional depth was due to the happy circumstance that our new trench came down over an ancient pit assumed to have been a water well. More fortunate still, the bottom 12 levels were entirely free of the "Conchas Orange" sherds presumed to denote the Late Preclassic build-up of most of Mound 1 (pp. 6-7). Additionally the clean, bright sherds in these levels were augmented by partially complete vessels in situ at the bottom of the well (within the present water level). All of this material falls into what is described below as a transitional Cuadros-Jocotal phase (or Early Jocotal).

Apart from establishing definitely the early date of the strata underlying Mound 1, the Trench 1-A data permit assignment of the upper construction to the very end of the Late Preclassic, that is, to the Early Proto-Classic as I have defined this elsewhere and in Table 1 (see also below). The Mound 1 clarification added to the original Mound 19 data also obtained this season now permits a reasonably satisfactory reconstruction of the Altamira cultural sequence.

The Altamira Ceramic Sequence Redefined

Cultural succession at Altamira is deduced almost entirely from changes in pottery types. In assessing this internal ceramic development we have been openly prejudiced by many preconceptions gained externally, as already stated. Chronologically speaking, sequential observations based on the study of ample data from any site within a given cul-
ture are usually more reliable than those contrived from less adequate or confused data, even though the latter are immediate to one's individual research. Adhesion to the general La Victoria–Salinas La Blanca chronological sequence for the Soconusco (Table 1), therefore, is still defensible in sequencing the Altamira pottery; the Guatemala data are from a greater cubic area, deeper deposits, larger artifact populations, and more detailed study than those so far obtained at Altamira. To all appearances the Guatemala complex of early estuary sites represents a more dense and somewhat more stable or constant occupation pattern whose greater quantities of refuse ostensibly should better be disposed to permit detection of fine degrees of culture change.

Notwithstanding the preceding argument, general adherence to the coastal Guatemala or "southeastern Soconusco" sequence must now be tempered with modifications seemingly forced by slightly divergent data recurrent at Altamira in our most recent investigations. Detection of these minor changes, interestingly enough, seems facilitated by the very lack of population density and inconsistency of occupation noted for Altamira in the preceding Discussion.

Identification and correct interpretation of the evidence left by any given occupation of constantly shifting family groups who were wont to reoccupy favored house sites indiscriminately over the millennia is a difficult and professionally hazardous undertaking. No sealed floors were left between domestic occupations on the Pacific coastal plain. Inhabitants returning to an old and long-abandoned dwelling site (probably selected for its superior drainage or forest cover rather than for any knowledge of previous human utility) immediately began mixing contemporary refuse with that already on or near the surface, however many centuries might have elapsed since the locus was occupied previously. Depending upon the degree of soil disturbance caused by the new group, this mixture may become profound or shallow, but it always occurs. As a result, the stratigraphic record in the archeologist's trench dug through this refuse gives no obvious hint of this hiatus between occupations (and there may be several such gaps in a given deposit) unless the cultural changes have been exceedingly drastic; they rarely are.

Comparison of data from many trenches at a given site, and between several sites within a culture area, appears to be the only means of breaking down the total occupational history; the need for areal seriation has been discussed by a number of authors, most recently Meggers, Evans, and Estrada (1965). There perhaps always will remain questions as to whether or not certain cultural distinctions are temporal or purely regional characteristics. Such problems can only be resolved by very extensive explorations, but meanwhile probably do not present any serious threats to the structuration of loosely formulated ceramic sequences. Any other formulation seems unwarranted, lacking such extensive investigations; tight local ceramic sequences seem never to apply to the community next door.

In the following recapitulation of the Altamira ceramic sequence, I have ordered the types chronologically, early to late, according to where they seem to fit in a pan-Soconusco sense. This is a provisional sort of thing and some existing phases have been split, as it were, rather than coin more newly named ones, even though such eventually may be justified. As indicated in the list below, the pottery type names correspond to those of La Victoria (Coe, 1961), Salinas La Blanca (Coe and Flannery, 1967), or Izapa (S. Ekholm, ms.) except in those few instances where uniqueness to Altamira has justified the formulation of new types. Identification of the La Victoria and Salinas La Blanca type parallels at Altamira is based primarily upon first-hand comparison with typical sherd collections from those sites. The exact Guatemalan ceramic complexes do not occur at Altamira, despite sufficient parallels to assure contemporary status, and we have qualified them below with the addition of "Altamira" to the phase name.

THE BARRA PHASE
With some hesitancy we considered splitting the La Victoria–Ocós phase to accommodate the situation found at Altamira. The alternative was to conjecture a pre-Ocós phase, something we were at first reluctant to do without more data or independent radiocarbon dates—the 500 years allotted to the Ocós
phase (Table 1) seemed fully adequate to encompass considerable internal development. The conservative course appeared to be division into early and late aspects, the earlier of which for one reason or another was not detectable or not present in the sampled La Victoria middens. The over-all rather different nature of the earliest Altamira complex, however, and its importance in terms of early interamerican relationships decided in favor of establishing this separate pre-Ocos phase.

Phase Markers:
- Cotán Grooved
- Monte Incised
- Petacalapa Black
- Tusta Red (Izapa)

THE ALTAMIRA-OCOS PHASE

Phase Markers:
- Ocos Specular Red (La Victoria)
- Michis Thin Tecomate (Izapa)

Survivals:
- Possible continuance of Cotán Grooved Red and Monte Incised

THE ALTAMIRA-CUADROS PHASE

Phase Markers:
- Guamuchal Brushed (Salinas La Blanca)
- Pampas Black-and-white (Salinas La Blanca)
- Amatillo White (Izapa)
- Tilapa Red-and-white (Salinas La Blanca)
- Cuchilla White
- Méndez Red Rim (Salinas La Blanca)
- Mapache Red Rim (Salinas La Blanca)
- Teófilo Smoothed (Salinas La Blanca)

Survivals:
- None certain, except as carry-ups.

THE ALTAMIRA EARLY JOCOTAL SUBPHASE

Phase Markers:
- Siltepec White (Izapa)
- Arenera Red-on-buff
- Suchiate Brushed (Salinas La Blanca)
- Xquic Red (Izapa)
- Culebra Gray

Survivals:
- All of Cuadros types except Mapache, usually in diminishing numbers.

THE ALTAMIRA LATE JOCOTAL SUBPHASE

Phase Markers:
- Tacaná Incised White (Izapa)
- Desvío Smooth Tecomate

A principal characteristic is the dominance of Siltepec, usually 40% or greater of total population and ranging to over 80%.

Other Survivals:
- All phase markers from the preceding subphase; of the Cuadros survivals only Guamuchal Brushed and Pampas Black-and-white appear to have continued, with the remaining occurring as carry-ups only.

THE CONCHAS 1 SUBPHASE

After the 1965 reappraisal, the Conchas 1 subphase seems to be absent at Altamira (and rare at Izapa). Late Jocotal certainly contains the generic antecedents with its predominant white-to-buff ware and incised designs (leading to Green's confusion of the two—cf. Figs. 23 and 91), but specific form, design, and hard-finish parallels are lacking. Furthermore, the abundant Conchas 1 figurine tradition seems to be absent at Altamira, though it occurs as a minor element at Izapa. Mound 19 surely was abandoned as a dwelling site prior to the full development of Conchas 1, and the Mound 1 area also.

It was thought at first that absence of the common Conchas 1 and 2 grater bowls at Altamira was a purely regional phenomenon; it now seems apparent that sampled portions of the site were unoccupied during both subphases.
The Conchas Subphase

As just stated, there is no present evidence of any occupation of Altamira at this time. Apparently the site was unoccupied throughout all of the Middle Preclassic and most if not all of the Late Preclassic as well. This is a long lapse of 600 to 700 years during which time mound building and the general pattern of Mesoamerican ceremonial civilization evolved elsewhere. A movement into more concentrated ceremonial centers nearer permanent water sources such as nearby Mazatan probably accounts for the abandonment of the lacustrine village.

The Middle and early Late Preclassic hiatus at Altamira almost exactly duplicates a similar gap in the Salinas La Blanca culture history (Coe and Flannery, 1967:67), as we have commented in the preceding Discussion.

THE CRUCERO PHASE

The pottery types of the Crucero phase as originally identified at La Victoria (Coe, 1961:84-86) have been redefined on the basis of “... a much richer collection ... including complete or nearly complete vessels from intrusive pits ...” found at Salinas La Blanca (Coe and Flannery, 1967:24).

Comparison of late Altamira orange and red sherds from Trench 1-A with a Crucero type collection from Salinas La Blanca failed to produce really good counterparts. The Guatemala estuary samples (as usual) are well preserved whereas those of Altamira are all badly eroded, but even so neither key shape nor finish characteristics seem to correspond closely.

A closer correspondence for the late Altamira pottery is seen with some of the cache vessels occurring in what I have defined as an “Early Protoclassic” provenience in Mound 30d at Izapa (Lowe, 1965:61). These Izapa caches, as well as the intrusive pit contents of Salinas La Blanca, have notably close resemblances to the Late Preclassic ceramics of Kaminaljuyú. The Salinas La Blanca Crucero types, however, are almost all related directly to the Miraflories phase at Kaminaljuyú. The Izapa Mound 30d caches have some slight time spread (report in preparation) and some of them are more closely related to the Arenal phase of Kaminaljuyú, and these, therefore, are post-Miraflories. The presence of mammiform tetrapod supports and certain other traits favors this slightly later level of comparison which aligns with the Horcones phase at Chiapa de Corzo. The Arenal and Horcones phases have been assigned an “Early Protoclassic” position by Lowe and Agrinier (1960:10-11; see also Lowe and Mason, 1965:218-221) because they are intermediate between the end of a complex comparable to that of the recognized Late Preclassic Maya (Holmul I) development.

Since Altamira does not present the full Early Protoclassic complex of traits (mammiform supports have not been identified), we are dealing probably with a local variant of the very late Late Preclassic Crucero complex intermediate to what followed at Izapa. It is also possible that the sophistication establishing a clear “Early Protoclassic” category simply did not arrive at provincial though contemporary Altamira, but it seems safer to suppose some slight chronological distinction. A split of Crucero is suggested (rather than an individual Altamira phase in a continuing attempt to preserve cultural continuity for the eastern Soconusco region), as follows (pottery types remain unnamed pending completion of the Izapa ceramics report).

Altamira—Early Crucero

Subphase Markers:
- None

Altamira Late Crucero

Subphase Markers:
- Late Crucero Red-on-orange
- Late Crucero Orange
- Late Crucero Plain

THE EARLY CLASSIC PERIOD

A pottery type indicative of an Early Classic occupation at Altamira was found only on the top of Mound 19; it is limited to 11 sherds, not described in this report.

Period Marker:
- Early Classic Incised (Izapa)
Cultural Stratigraphy by Trench, 1965

Sherd-count tables are given below for each of the trenches excavated at Altamira in 1965. Percentages have not been calculated; most trenches had few sherds, and relative popularity of a given type at any point in time can be estimated by comparing with the level totals. Significant percentage changes are noted in the text.

With few exceptions, all sherds tabulated are rim fragments. The exceptions are mostly confined to incised or modeled sherds of bases or walls. Simply brushed body sherds were not included, and neither were most basal angles, contrary to usual practice. In a pottery complex dominated by flat-bottom bowls, for example, inclusion of the base sherds overweights the analysis in their favor vis-a-vis olla or tecomate (globular neckless jar) forms which as a rule at Altamira have no recognizable bottoms. Many Soconusco pottery types are all tecomates by definition and others are almost confined to flat-bottom vessels.

Base sherds have value for reconstructing shapes but in treating lots of mixed round and flat-bottom types they only needlessly confuse the type-statistics if included in a selected sample. (The impossibility of assigning ordinary body or base sherds to respective types when these latter are based upon distinctive rim or shoulder treatment has been stated by a number of authors, including Coe and Flannery, 1967:22, and all such analyzed types are necessarily selected samples.) Undecorated base sherds were retained in the count only for Tusta Red, a type for which rim sherds of some forms were lacking.

The popularity of Monte Incised, Cotán Grooved, and Tacana Incised types is exaggerated in the tables because all of the numerous body sherds demonstrating the diagnostic characteristic were tabulated. This does not affect vertical change ratios but should be considered in comparing relative type frequency within levels.

Phase placement has been indicated at the bottom of each of the following tables as near as it is possible to determine it. A minimum overlap of a single level has been allowed between phases. Where considerable mixture is supposed, this has been stated or the overlap increased. Suspected gaps in the occupation are also indicated.

TRENCH 19-A

Trench 19-A was the smallest of the 1965 excavations, being 2 x 2 m. in area and producing only 57 sherds from five levels of 20 cm. each (Table 9). The trench profile showed only the usual gray humus, brown intermediate soil, and yellowish sandy subsoil common to Altamira.

Despite its low sherd count, the Trench 19-A test evidenced a valid cultural succession, as following trenches were to show. Its importance as a guide to further investigation has been stated above.

In Table 9 we have indicated a hiatus between the sparse Barra and Ocós phase indications and Early Jocotal, due to the lack of a strong presence of Cuadros types. It should be noted, however, that Cuadros is poorly represented in all of the 1965 trenches and, in the only two instances where noted as an actual occupation (Trenches 19-CEF and 1-A), it is in mixed situations on the edges of the mounds. In Mound 19 either the Cuadros occupants confined their refuse to the eastern,

<table>
<thead>
<tr>
<th>20 cm. levels:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocos Specular Red</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Méndez Red Rim</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Arenera Red-on-buff</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tuxtla Smoothed</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Suchiate Brushed</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Guamauchal Brushed</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Siltepec White</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Michis Thin Tecomate</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Amatillo White</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Petacalapa Black</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pampas Black-and-white</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Colebre Gray</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Monte Incised</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Cotán Grooved Red</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Tusta Red</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Totals:</td>
<td>23</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>57</td>
</tr>
</tbody>
</table>

Cuadros phases

<table>
<thead>
<tr>
<th>Ocos</th>
<th>Barra</th>
<th>Hiatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
lower side, or else, as postulated below, their refuse was cleared away and deposited there at the beginning of the Jocotal habitation.

The Trench 19-A sherds were extremely small and scattered, suggesting that they had been deposited not in a refuse dump but on the surface of an area either walked upon or cultivated.

TRENCH 19-B

As previously mentioned, Trench 19-B tested a zone of abundant large sherds on the lower east slope of the mound area. It was 3 x 3 m. in area and encountered only four 20 cm. levels of sherds, the bottom one of which was composed of the fragments of a single vessel. Drainage in this area is poor and an increased mottled clay presence was noted in an otherwise insignificant wall profile.

The adverse conditions of the 19-B locale had badly stained the sherds and left them frequently covered with an obstinate fine sand film. Some lumping occurred as a result of this dirty condition and the rapid handling of this particular sample: Siltepec White contains a few examples of Arenera Red-on-buff, plus a few of the gray and white types, including one example of Tacana Incised White; Suchiate Brushed includes a few Desvio Smooth Tecomate rims. On the whole nevertheless this collection was so homogeneous that a vessel-form tabulation seemed most appropriate, and even so no change is indicated early to late (Table 10). The 8 sherds from the single cylindrical jar in Level 4 may be considered intrusive.

The Trench 19-B deposit is thought to be entirely Late Jocotal due to its extreme emphasis upon Siltepec White and the low ratio of tecomates to flat-bottom bowls. Flat-bottom bowls make up to 67% of the total sample. The tecomate form accounts for only 15% of the total sherds, and varies just slightly through time from 14% in Level 3 to 18% in Level 2 and 11% in Level 1. This low tecomate popularity is a far cry from the earlier phases with 96% indicated for certain early Cuadros lots at its type site (Coe and Flannery, 1967: 23), or for the Barra to Early Jocotal manifestations at Altamira (see Table 14 for Trench 19-H below).

The Trench 19-B occupation may be considered relatively brief and to have arrived full blown at its locus, probably as a single-phase extension of the habitation on the nearby mound. The limited cultural inventory suggests strictly domestic activity, very probably limited to the preparation or consumption of a particular foodstuff.

Accepting the concentration of a particular activity as the explanation for the Trench 19-B collection, we do not suppose cultural poverty to be responsible for the small type inventory and do not consider this inventory necessarily to be fully representative of the Late Altamira-Jocotal subphase. The great emphasis on the flat-bottom bowl, however, is the principal characteristic of the late subphase everywhere identified.

TRENCH 19-CEF

The largest of the 1965 trenches, 19-CEF was 3 m. wide and 15 m. long, cutting through the east slope of the mound. It produced seven 20 cm. levels with a total of 1,866 rim sherds (Table 11).
Table 11. SHERD COUNT, TRENCH 19-CEF, ALTAMIRA

<table>
<thead>
<tr>
<th>20 cm. Levels:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michis Thin Tecomate</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Ptecalapa Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Xquic Red</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Siltipec White</td>
<td>574</td>
<td>217</td>
<td>59</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>863</td>
</tr>
<tr>
<td>Arenera Red-on-buff</td>
<td>39</td>
<td>19</td>
<td>39</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Desvio Smooth Tecomate</td>
<td>20</td>
<td>44</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Tacaná Incised White</td>
<td>27</td>
<td>17</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Mapacho Red Rim</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Suchiate Brushed</td>
<td>142</td>
<td>108</td>
<td>35</td>
<td>21</td>
<td>4</td>
<td>6</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>Pampas Black-and-white</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>15</td>
<td>39</td>
<td>13</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>Cotán Grooved Red</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>Guamuchal Brushed</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>Tusta Red</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Méndez Red Rim</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>Ocós Specular Red</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Teofilo Smoothed</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Culebra Gray</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Amatillo White</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Tilapa Red-on-white</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Ochillila White</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Monte Incised</td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Totals: 841 448 225 121 121 83 27 1866

The Trench 19-CEF natural stratigraphy showed nothing culturally significant, with only the usual soil changes. Its cultural stratigraphy, however, is outstanding, though less clear than that of 19-H which was dug to supplement it. The long and rather complex occupation history indicated at the bottom of Table 11 is deduced from comparisons with the results of Trenches 19-A, D, and H; an independent study might have been interpreted somewhat differently.

Noteworthy is the constant increase in total rim-sherd content from early to late, practically doubling itself each 20 cm. of vertical accretion. This total increase is paced by Suchiate Brushed and the late-appearing Tacaná Incised, Desvio Smooth Tecomate, Arenera Red-on-buff, and Siltipec White, with a tremendous increase of the latter type in the uppermost two levels. In all, a steady growth pattern is shown, with a central group of pottery types present from the beginning becoming very unimportant percentage-wise toward the surface and a lower group ceasing to appear altogether.

This is the only trench in Mound 19 for which we calculate a Cuadros occupation, this primarily based on the predominance of Guamuchal over Suchiate tecomate forms in Levels 7, 6, and 5 (with an abrupt reversal of this ratio in Level 4 and thereafter). The mixture of Barra and Ocós-phase types with Cuadros types in the lowermost level could indicate contemporary status for part of Barra-Ocós and Cuadros, but the evidence from Trenches 19-A, D, and H denies this probability. There is much mixture indicated for all levels below the second, and this may be expectable on the downhill side of a habitation zone known to have had shallow occupational deposits. The 15-meter trench apparently cut across an area of refuse deposition which, forming slowly over a long period of time on a sloping surface, represents a greater than normal degree of intermixing.

A further explanation for the highly mixed situation in 19-CEF is suggested by the extreme rarity of Cuadros pottery on the Mound
19 summit area, as sampled by Trenches A, D, and H. The obvious reason for this would seem to be that the Cuadros occupants maintained the higher, more level, inhabited section clean, throwing their trash down the slight decline on the east. An alternate explanation would be that the Late Jocotal population cleared away the extant Cuadros and Early Jocotal refuse and deposited it on the east side of the mound, either as a leveling operation or in an attempt to clear a solid habitation floor. This alternative would best explain the rather complete intermixing of Early Jocotal with Cuadros on the slope and the rarity of either on the summit area, but, with all sampled phase deposits being as shallow as they are, either explanation seems adequate.

The outstanding contribution of Trench 19-CEF is the evidence it presents for an actual Cuadros equivalent at Altamira. The Cuadros occupation is extremely well documented at Salinas La Blanca, where it is more abundantly represented than is Jocotal (Coe and Flannery op. cit.), contrary to the situation at Altamira. Dominance of the Cuadros “type fossils” Guamuchal Brushed, Mapache Red Rim, Pampas Black-and-white, and Cu-chilla White over their later counterparts in Levels 5, 6, and 7 of Trench 19-CEF is therefore welcome confirmation of the phase at Altamira. Particularly confirmative is the sudden reversal of the Guamuchal-Suchiate Brushed ratio in pronounced favor of the latter from Levels 5 to 4, duplicating the Salinas La Blanca process.

The rapid build-up of Siltepec White in Trench 19-CEF to 48 and 68 percent in Levels 2 and 1 respectively is spectacular and approaches that of the Trench 19-B occupation (where Siltepec averaged 85% of total in all levels). Both trenches give dramatic evidence for an unusually heavy utilization of the eastern slope of Mound 19 during the Late Jocotal phase as compared with the summit area which was being maintained relatively clean (late sherd density is approximately 2 to 4 times greater for the slope areas).

TRENCH 19-D

Trench 19-D was a test pit 3 x 3 m. in area dug on the west side of Mound 19. Its purpose was to investigate the possibility of a refuse zone existing in this gentle slope area, about 50 cm. lower at this point than Trench 19-A located 40 m. eastward. Four 15 cm. culture-bearing levels were excavated (Table 12).

No heavy refuse deposit was found in Trench 19-D. The sparse and tiny sherds, however, do represent an undisturbed accumulation unexcelled at Altamira in its apparent clarity of ceramic complexes. The evidence suggests a cultivated or living area of low population density, with a relatively more dense Late Jocotal deposit accumulated over shallow Barra and Ocós-phase debris, with an obvious hiatus representing the several centuries of nonuse between the two extremes. The hiatus is emphasized by the near-absence of Cuadros-phase types, an absence that suggests that the western mound slope was not receiving refuse at that time. The confused Cuadros situation and the possibility of disturbance by the following Jocotal occupants has been discussed both above and below.

TRENCH 19-H

Trench 19-H was laid out on the longitudinal axis of the mound and as close to the summit as the dwelling there would permit. Its dimensions were 3 x 9 m. and a depth of 1.40 m. of culture-bearing deposit was found (Fig. 70). Typical of Altamira, the soil profile showed nothing culturally significant. The

Table 12. Sherd Count, Trench 19-D. Altamira

<table>
<thead>
<tr>
<th>15 cm. levels: 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pampas Black-and-white</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tacana Incised White</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Acme Red-on-buff</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Suchiate Brushed</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Siltepec White</td>
<td>9</td>
<td>12</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Guamuchal Brushed</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michis Thin Tecamal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amatillo White</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ocós Specular Red</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Monte Incised</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tuai Red</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotán Grooved Red</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals:</td>
<td>20</td>
<td>29</td>
<td>26</td>
<td>16</td>
</tr>
</tbody>
</table>

APPENDIX—ALTAMIRA TRENCH EXCAVATIONS 91
783 tabulated sherds, however, are outstanding for their high percentage of Barra-phase examples, many of them found in almost unmixed lowermost deposit (Table 13). This collection not only permitted the definition of this earliest known Chiapas complex, but in substantiating the small 19-A and 19-D cultural stratigraphies it provided the firm basis needed for the redefinition of the Altamira sequence in general.

The 19-H ceramic history, as diagrammed at the bottom of Table 13, represents a constant but somewhat confused cultural evolution. In terms of the clear 19-A and 19-D pattern, it is particularly puzzling that in 19-H the Cotán Grooved Red, Monte Incised, Ocós

![Figure 70. NORTH-SOUTH SECTION OF TRENCH 19-H](image)

Table 13. SHERD COUNT, TRENCH 19-H, ALTAMIRA

<table>
<thead>
<tr>
<th>Type</th>
<th>10 cm. levels:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Classic Incised</td>
<td></td>
<td>6</td>
<td>5</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Tzacaná Incised White</td>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Guamuchal Brushed</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Méndez Red Rim</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tilapa Red-on-white</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Xpoc Red</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mapache Red Rim</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wichie Thin Tecomate</td>
<td></td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Arenera Red-on-buff</td>
<td></td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Pampas Black-and-white</td>
<td></td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Culebra Gray</td>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Ocós Specular Red</td>
<td></td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Suchiate Brushed</td>
<td></td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Sistepac White</td>
<td></td>
<td>21</td>
<td>54</td>
<td>34</td>
<td>39</td>
<td>28</td>
<td>23</td>
<td>20</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>Petacalapa Black</td>
<td></td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Monte Incised</td>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>15</td>
<td>36</td>
<td>14</td>
<td>15</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Amatillo White</td>
<td></td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Cotán Grooved Red</td>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>18</td>
<td>17</td>
<td>19</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Tusta Red</td>
<td></td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>45</td>
<td>84</td>
<td>76</td>
<td>104</td>
<td>81</td>
<td>76</td>
<td>95</td>
<td>90</td>
<td>54</td>
<td>33</td>
<td>25</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>783</td>
</tr>
</tbody>
</table>

N.W.A.F. PAPER No. 20. GREEN AND LOWE: ALTAMIRA AND PADRE PIEDRA
Specular Red and Michis Thin Tecomate sherds all continue in respectable frequencies up to within one or two levels of the surface, whereas both Petacalapa Black and Tusta Red end, as expected, at the beginning of the postulated Ocós-phase occupation. My interpretation of this is that Cotán Grooved Red and Monte Incised continued to function after the arrival of Ocós Specular Red and Michis Thin Tecomate, forming with them the Altamira variant of the Ocós complex, but that the persistence of these types in the upper levels of 19-H is due to secondary deposition or “carry-ups”. (The small size and attractiveness of these sherds facilitated such “carry-ups”; note their frequency as reworked sherds, p. 126).

The possibly disturbed nature of part of the Mound 19 deposit has been discussed under Trench 19-CEF. The 19-H situation also supports the suspicion that the Cuadros occupants either kept the mound summit free of debris, originally, throwing it down the steeper eastern slope, or else that their debris was deliberately removed subsequently by the Jocotal settlers, as already suggested. It is noteworthy that the principal Cuadros diagnostic, Guamuchal Brushed, scarcely appears. Other Cuadros types are minutely represented. Whatever the historical reason, Jocotal sherds intermixed freely with those of the Barra and Altamira-Ocós complex. This is probably due to mechanical mixing at Levels 5 or 6 through 9—a mere 40 cm.—plus some carryup as noted above, and just possibly to some addition to the surface levels of earlier material brought in from the area west of the mound in connection with Late Jocotal building activity.

The steadily increasing percentage of Siltepec White in 19-H conforms to the norm expected of the Early-to-Late Jocotal evolution, reaching a maximum of 64% in Level 2, almost equalling that of 68% in Level 1 of 19-CEF.

The 11 Early Classic Incised sherds appearing in Levels 1 and 2 of 19-H represent a superficial use of the mound surface, probably by a transitory farming group. No other evidence for an occupation at this time has been noted at Altamira (though it follows almost immediately on the heels of the Mound 1 Early Protoclassic build-up).

A breakdown of the principal ceramic types of 19-H into shape categories (Table 14) demonstrates the shift in popularity from tecomates to open, flaring, or vertical-wall bowls.

Table 14. Sherd Count by Vessel Form for Principal Types, Trench 19-H, Altamira

<table>
<thead>
<tr>
<th>Level</th>
<th>Cotan</th>
<th>Monte</th>
<th>Miches</th>
<th>Su-chalate</th>
<th>TECOMATES</th>
<th>Bowls</th>
<th>Jars</th>
<th>ARENERA</th>
<th>SILTEPEC WHITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>13</td>
<td>59</td>
<td>1</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>37</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>15</td>
<td>6</td>
<td>7</td>
<td>46</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>26</td>
<td>2</td>
<td>3</td>
<td>38</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>15</td>
<td>2</td>
<td>26</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Levels</th>
<th>TECOMATES</th>
<th>ARENERA</th>
<th>SILTEPEC WHITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>120</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>344</td>
<td>294</td>
<td>63</td>
<td>3</td>
</tr>
<tr>
<td>104</td>
<td>95</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15. Sherd Count, Trench 20-A, Altamira

<table>
<thead>
<tr>
<th>10 cm. levels:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocós Specular Red</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suchiate Brushed</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guamuchal Brushed</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siltepec White</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>5</td>
<td>15</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amatillo White</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>16</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culebra Gray</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecomán Incised White</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilapa Red-on-white</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapache Red Rim</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenera Red-on-buff</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pampas Black-and-white</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>227</td>
</tr>
</tbody>
</table>

TRENCH 20-A

A test pit 3 x 3 m. in area, Trench 20-A was the only excavation made in Mound 20. Its seven 10 cm. levels demonstrate clearly the primarily Jocotol occupation responsible for this low cultural accumulation (Table 15).

Siltepec White shows a normal Late Jocotal dominance, running to 76% on the surface. An earlier slight predominance of Amatillo White and Guamuchal Brushed (over Suchiate) suggests that there was intermixture with a shallow Cuadros complex. Two sherds of Ocós Specular Red indicate that an Ocós complex may be present under some portion of the mound.

Mound 20 shows none of the Late Preclassic–Early Protoclassic (Late Crucero) occupation with its constructed platforms responsible for confusing the stratigraphic situation over most of the southern part of the site. As with Mound 19, it is purely an Early Preclassic accretion.

TRENCH 1-A

As previously explained (p. 84), Trench 1-A was excavated to resolve the Mound 1 cultural sequence, or, more particularly, the nature of the sub-mound ceramic complex known to underlie the apparently non-midden portion of the mound. The trench was dug in two sections, A and B, but the sherds were combined for the analysis. The trench cross-section showed what for Altamira is a complex profile (Fig. 71). The three upper strata may be discarded as secondary accumulation, though the blackish soil may in part be the remains of a primary deposit. Distinction between the bank of yellowish earth and the blackish soil was precise, as shown by the drawing, and seems to represent an actual constructed platform. The white sand seems unquestionably an original undisturbed deposit, the same as noted in 1963 by Green to run under the mound (p. 6).

The compact yellowish sand zone in Fig. 71 represents the subsoil general beneath Altamira. But in the A section it is obviously disturbed and redeposited, unless the pit profile as drawn shows a situation actually to one
side of an ancient pit dug to reach water and in which the remains of several vessels were found at present water level (notes are not clear at this point). Whatever the situation, Trench 1-A cleared out the contents of the ancient “well”, which, judging from the similarity of the two sand deposits, must have been dug originally from about our Level 12, or, assuming a continuing decline at the edge of the old lagoon, from a point somewhat lower.

The 1-A sherd frequency chart (Table 16) records a primary deposit of Early Jocotla pottery, apparently broken and abandoned in the old water hole from Level 18 to sterile at Level 30, well within the present water level. From Level 17 upward appear polished red and orange sherd (the Conchas Orange of Green, pp. 6-7), denoting the terminal Late Preclassic or Early Protoclassic Late Crucero activity in the area (p. 87). The apparent explanation of this situation is an abandonment of the natural hill slope and water hole at the close of the Early Jocotla Phase, with a reutilization taking place about 7 or 8 centuries later.

The Early Jocotla sherds from Levels 18 to 30 are the famed “crisp” or clean kind seldom come upon at Altamira or Izapa; they include the examples illustrated in Figs. 79, h; 81, a; 82, b; 83; and 90, b, d. Above Level 18 occur the usual eroded and stained sherds common to the region. Of more importance culturally is the mixed nature of these last-mentioned sherds; not only are there Late Crucero types present, but also some earlier types not present in the limited water-hole sample, notably Mapache and Méndez Red Rim and two sherd of Cotán Grooved Red. Failure of the red-rim tecomate types to appear in the water-hole sample could be explained if these cooking-jar types (Coe and Flannery, 1967:28) were not taken to water—if they neither were washed nor used for carrying water. Six of the plain-rim Guamuchal jars were included in the water-hole sample and it is possible that there is a functional reason for the presence of plain and absence of painted rims. It seems more probable, however, that the early sherds common in the upper levels of Trench 1-A are the result of the redeposition of rubbish brought from a nearby source (see below) during the Late Crucero house-platform construction (pp. 7, 8).

It is interesting to note that the three Late Crucero pottery types, although beginning in Levels 16 and 17, die away completely in Levels 14-12 and do not surpass 2 sherds per level until Level 9. Levels 14 to 9 encompass the basal area of the yellowish earth “platform” shown in Fig. 71 and suggest that the Late Crucero pottery was very scarce at the time of construction—i.e., that the supposed platform was raised up soon after the arrival of the Crucero culture-bearers.

From Level 9 upward there is a marked increase in sherd density, rising almost steadily to a peak (of 284) in Level 5 and then declining steadily to the surface. The 40 cm. above Level 5 is almost certainly all eroded material from higher up on the mound; the upper 30 cm., in fact, is all post-1902, the year of the ash fall-out from the Santa Maria volcano (Coe, 1961:19). The unusually high sherd content of Levels 5 and 6 is also undoubtedly due to debris washing off from the summit of the mound after the Late Crucero abandonment and lodging in the lower slope areas.

In spite of the Early Jocotla date of the “pure” water-hole deposit in Trench 1-A, there apparently is much Cuadros material in the assumed construction level above. For instance, Guamuchal dominates over Suchiate Brushed in all levels between 13 and 5 except in two (9 and 6) and this must result from the inclusion of Cuadros complex sherds in the platform fill. The Cuadros identification is further suggested by the numerous thickened-rim sherds of Pampas Black-and-white (q.v.). It appears probable that a primary Cuadros-phase occupation existed nearby, but not within the present Mound 1. A likely source area is that near Mound 14, directly across the small lagoon on the north of Mound 1. This is a zone which never has been tested, in spite of being the highest sherd-bearing eminence at Altamira (p. 2).
Table 16. Sherd Count, Trench 1-A, Altamira

| 10 cm. levels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | Totals |
|---------------|---|---|---|---|---|---|---|---|---|---|---|
| Petacalapa Black | | | | | | | | | | 1 |
| Mapache Red Rim | 1 | 1 | 2 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | | | 7 |
| Cotan Grooved Red | | | | | | | | | | 2 |
| Incense Burner | 1 | 2 | 4 | 3 | 1 | 4 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | 19 |
| Tacana Incised White | 1 | 2 | 2 | 12 | 5 | 6 | 7 | 5 | 1 | | | | | | | | | | | | | | | | | 53 |
| Late Crucero Plain | 1 | 4 | 7 | 5 | 4 | 2 | 6 | 1 | 1 | | | | | | | | | | | | | | | | | 32 |
| Melendez Red Rim | | | | | | | | | | 15 |
| Arenera Red-on-buff | 1 | 2 | 3 | 2 | 3 | 1 | | | | | | | | | | | | | | | | | | | | | 148 |
| Late Crucero Red-on-orange | 1 | 2 | 3 | 1 | 1 | 8 | 17 | 17 | 4 | 6 | 1 | 2 | 1 | | | | | | | | | | | | | | | | 67 |
| Late Crucero Orange | 1 | 6 | 2 | 9 | 17 | 9 | 3 | 6 | 1 | | | | | | | | | | | | | | | | | | | | 58 |
| Siltopec White | 15 | 17 | 33 | 57 | 122 | 81 | 72 | 49 | 52 | 27 | 22 | 17 | 10 | 5 | 7 | 3 | 5 | 1 | 1 | | | | | | | | 591 |
| Pampa Black-and-white | 1 | 3 | 5 | 5 | 6 | 4 | 6 | 5 | 2 | 5 | 2 | 3 | 1 | 2 | | | | | | | | | | | | | | | | 60 |
| Aquic Red | 1 | 2 | 6 | 7 | 11 | 6 | 3 | 3 | 5 | 2 | 3 | 3 | 4 | 4 | | | | | | | | | | | | | | | | 60 |
| Silticke Brushed | 5 | 5 | 13 | 11 | 18 | 26 | 17 | 14 | 9 | 11 | 3 | 5 | 4 | 4 | 3 | 3 | | | | | | | | | | 152 |
| Guacamal Brushed | 2 | 11 | 10 | 26 | 18 | 18 | 19 | 5 | 11 | 6 | 10 | 6 | 1 | 2 | 1 | | | | | | | | | | | | | 159 |
| Culebra Gray | 2 | 13 | 11 | 21 | 29 | 30 | 31 | 17 | 19 | 10 | 13 | 18 | 9 | 5 | 9 | 5 | 4 | 5 | 1 | | | | | | | | | 283 |
| Tlapa Red-on-white | 1 | 1 | 2 | 1 | 3 | 5 | 7 | 1 | 2 | | | | | | | | | | | | | | | | | 26 |
| Amatlillo White | 5 | 1 | 3 | 1 | 5 | 1 | 7 | 7 | 6 | 2 | 3 | 3 | 1 | 1 | | | | | | | | | | | | | | | 51 |
| Totals: | 27 | 56 | 93 | 162 | 284 | 257 | 192 | 179 | 125 | 86 | 67 | 70 | 45 | 45 | 26 | 30 | 25 | 13 | 1 | 6 | 3 | 4 | 2 | 2 | 3 | 5 | 4 | 1 | 5 | 3 | 1787 |

Note: Detritus

Late Crucero refuse with earlier deposits.
APPENDIX—ALTAMIRA POTTERY

Altamira Pottery Types

In spite of the shallow occupation deposits characterizing Altamira and the usually eroded condition of the recovered artifacts, the several excavations of the brief 1965 season produced very satisfactory type samples. These are, furthermore, now rather well defined and placed in their relative chronological positions, thanks to both internal and external evidence.

CERAMIC ANALYSIS

In the redefinition of the Altamira ceramic sequence appearing above, the type site for individual types is stated, and it may be noted that only 10 of the 25 listed are unique to Altamira, and that only 7 of these are Early Preclassic. The later pottery will eventually correspond to groups in the Izapa typology (report in preparation). Description of the early unique types is given more fully below, whereas the non-unique and later types may be better described and illustrated by the indicated authors.

For Salinas La Blanca comparisons we have been depending upon a type sherd collection and a manuscript copy of Chapter IV “The Pottery of Salinas La Blanca,” and Chapter VI, “Dating the Archaeological Sequence,” both kindly afforded us by the senior author (Coe and Flannery, 1967, hereinafter referred to as CF). An advance copy of the printed report was graciously made available just before this paper went to press.

The Izapa types correspond to the analysis of S. Ekholm (n.d.) to be published as part of a general study of the Izapa Preclassic material culture (S. Ekholm, in preparation). The Izapa Early Preclassic types, however, are all from Middle Preclassic mound fill and are dependent upon stratigraphic data from elsewhere for finer chronological placement. One object of the 1965 Altamira research in fact has been this chronological ordering of the earliest Izapa ceramic typology. Recognition at Altamira of six Izapa or Early Preclassic types which were not identified at either La Victoria or Salinas La Blanca demonstrates the closer unity of the Chiapas sites as a cultural subregion of the Soconusco.

Documentation and limited comparative data are included in the following analysis, but wider cultural interpretations have been given in the Discussion, within their pertinent phase category.

To facilitate consultation, the pottery types are described below in catalog form, early to late.

BARRA PHASE

COTAN GROOVED RED

(Figs. 72, 73)

Surface

Slip applied over well-smoothed and polished exterior and vertical portion of the interior lip; post-slip polishing noted on few sherds. Exterior color varies from light reddish brown to dark and dusky red. Hematite seems to be the source of part, but not all, of the slip pigment, and in general both the color range and general appearance of many sherds closely resemble that of Ocos Specular Red (Coe, 1961:51), which seems to have developed out of this type (see below). Interior surfaces are light brown to gray, poorly smoothed, and wiped with the hand, a rag, or a bundle of fibers in individual cases.

Paste

Medium hard with wide yellow-gray to black cores predominating. Texture is compact, medium to fine sandy; inclusions are usually well sorted, but include a few large lumps of iron oxide. Clay appears to be bentonitic and to include quartz and other crystals natural to the decayed tuffaceous sediments of the Pacific Coast (CF:21-22). Small biotite platelets are usually noticeable on the surface, particularly of the unslipped interior.

Form

Confined to neckless, globular jars, hereinafter referred to as tecomates, the Mexican term for this gourd-like shape. The form here is squat, wider than tall, with flattened bases (Fig. 72). Lip form is pointed-rounded, thinned and slightly upturned toward the upper, exterior edge; sharply upturned lips give a lightly collared effect to a few orifices (Fig. 73, a, e). Except for the miniature vessel (Fig. 72, a), diameters of bodies seem to average just less than 25 cm., with inner rim diameter varying from 6 to 14 cm. with an average of
9.6 cm. Walls are medium thin, varying from 4 to 9 mm. and averaging about 6 mm.

Decoration

Varies from wide, true flutes up to 17 mm. wide (Fig. 73, s) to shallow narrow grooves made with a round-pointed instrument. From one to three of the grooves encircle the rim and below these others run vertically (true flutes only) or diagonally to base. A few examples are of concentric semicircles (Fig. 72, k, 73, v) and additional examples seem indicated (Fig. 73, m, q). Neither the grooving nor the true fluting affects the interior of the vessel. Even the protrudent “lobes” on the miniature vessel are solid exterior additaments leaving the interior a smooth circular surface.

Distribution

Altamira. Frequency: 169 rim and decorated body sherds (3.3% of the total 1965 sample); confined to Mound 19 except for 2 sherds in Mound 1. Not found in 1963 material.

External. Dissimilar to any pottery known in Mesoamerica except for Ocós-phase examples at La Victoria, such as Ocós Specular Red wherein “One almost miniature vessel has indications of very shallow diagonal flutings on the exterior” (Coe, 1961:51). A photograph of what appears to be this sherd from the Guatemala National Museum is included in the inset of Figure 73. Another close La Victoria parallel to Cotán Grooved Red is an Ocós Brown Burnished sherd of the Ocós phase with “vertical grooves outlining shallow vertical fluting” (op. cit.:54; Fig. 23, j). Additionally, an Ocós Iridescent neckless-jar sherd is also very similar to the Cotán Grooved form—it is described as having “... shallow, spaced, vertical grooves on body exterior resembling a sort of incipient fluting” (op. cit.:56; Fig. 23, q).

From the foregoing it is obvious that Cotán Grooved Red is present in the Ocós complex, but in general the Altamira type antedates the La Victoria Ocós phase. The earlier date for the Altamira type is sustained by far-flung early relationships to the south. The most apparent of these is with the Machalilla Incised type of the Ecuadorian coast, wherein there are resemblances in both shape (Form 1: “rounded jar with constricted mouth”) and grooving (“made with a smooth-pointed tool”); some of the illustrated Ecuadorian sherds are strikingly similar to Cotán Grooved Red rims and bodies (Meggers, Evans, and Estrada, 1965:Plate 144, g, i-p, r, s); the shape-decorative is not mentioned nor illustrated in their text section, but Plate 144, g, i, m-p, s, t surely are photographs of round body sherds with parallel grooving. Also, a grooved tecomate rim with a lobe beneath seemingly represented by Plate 144, c (ibid.) is very much like an Altamira example (Fig. 73, r), but is not described.

The Machalilla Incised Form 1 also has almost identical dimensions as Cotán Grooved Red, with mouth diameters of 6 to 12 cm., and with even thinner body-wall thickness (1 to 4 mm.). Form 1 is late in the Machalilla sequence, but Machalilla Incised does not continue into the Chorrero phase and is found as a rarity in Period C sites of the Valdivia phase dating to between 2000 and 1500 B.C. (op. cit.:Fig. 93). The “fit” here with the Barra phase at Altamira is therefore rather good (for further comment, see Discussion).

A more general comparison of Cotán Grooved Red may be made with the Barlovento culture of the north coast of Colombia, where the single ceramic type is mostly composed of low tecomates. These approach rather closely the form of Cotán Grooved Red, but combine punctuations with the shallow rounded but pre-polish grooving; only a single horizontal groove is noted below the rims, but multiple diagonal grooves are typical (Reichel-Dolmatoff, 1955:Fig. III-V). This Colombian ware surely is some sort of intermediary between the Barra and Valdivia.
Figure 72. COTAN GROOVED RED POTTERY: RECONSTRUCTED FORMS
phases. An apparent relationship between Barlovento and the Tick Island Incised of Florida has been noted recently by Ford (1966:13-14). A parallel use of broad or “wide-line” incising and the scroll motif is noteworthy for these two complexes (op. cit.: Fig. 3, a-e) and that of Cotan Grooved Red as well (Fig. 73, v). The ca. 1500-1300 B.C. date of these two widely separated Atlantic and Caribbean sites makes the intermediate but Pacific Coast situation of Cotan Grooved Red (and following types) at the same dates one of extreme interest.

Temporal. The stratigraphic priority of Cotan Grooved Red to recognizable Ocós-phase types is established in both Trenches 19-A and 19-H. It was a more popular type than Ocós Specular Red (or its companion type Michis Thin Tecumate), and it is questionable whether it actually continued contemporarily with the Ocós types or whether its presence is due to carry-up only. Our slim evidence indicates that the Barra phase typified by Cotan Grooved Red was of longer duration at Altamira or else heavier than the partial Ocós contemporary which arrived toward its end. At nearby Colonia Aquiles Serdán (Navarrete, in preparation), occasional grooved red sherds appearing in an Ocós-like complex compare better with La Victoria than with Altamira; eventual recognition of chronologically significant sub-types is to be expected.

PETACALAPA BLACK

Fig. 74

Surface

Well smoothed, then lightly slipped and polished, with paste inclusions visible on the surface. Open bowl forms received equal treatment interiorly and exteriorly, and even jar forms seem well smoothed and slipped on the interior, in contradistinction to the preceding type. Color varies from light grayish brown to reddish black. A hand lens shows crazing of the slip, with a tendency to flake away under erosion.

Paste

Bentonitic, medium sandy appearing, friable and poorly fired, apparently in a smudging atmosphere. Color is grayish to yellowish brown with indistinct core margins blending into the only slightly darker surfaces.

Form

Flat-base, slightly outflaring-wall bowl and vases, plus jar form of unknown shape. Finished interiors of the latter suggest a wide mouth, but rims are lacking in the very small sample. Three measurable bowl and vase diameters are 26, 20 and 4 cm.; height of latter is 5 cm. Wall thickness varies from 4 to 12 mm.

Decoration

A single example of inner-rim lip groove (Fig. 74, a) approaches the Ocós Black bowl forms of the Ocós phase (Coe, 1961: Fig. 22, h, i). There are six examples of zoned punctate impressions on exterior wall sherds of jars (Fig. 74, c-f). The impressions are pre-slip and either round, triangular, or ovaloid in plan, encompassed by a fine grooved-incised curving line. Some examples contain red pigment in the depressions, which were made carefully and do not alter the surface contour of the vessel wall.

Distribution

Altamira. Frequency: 17 rim and decorated body sherds, all but one from Mound 19, and 14 from Trench 19-H. This rare type is the only well-polished black pottery at Altamira; the generally interiorly polished Pampas Black-and-white seems to replace it.

External. This is the earliest-known zoned-punctate decoration in Mesoamerica, where it has no counterpart in the following Ocós phase. The decorative technique becomes frequent throughout the Preclassic later, but at the early date of the Barra phase its best parallels seem to be those suggested by Ford for the Barlovento and Tick Island complexes mentioned above under Cotán Grooved Red. Correspondences are reasonably close for examples illustrated for the Colombia site by Reichel-Dolmatoff (1955:Lams. III, IV). The Petacalapa decoration seems more carefully executed.

Temporal. Disappears at Altamira at the close of the Barra phase.
Figure 73. COYAN GROOVED RED

Figure 74. PETACALAPA BLACK
MONTE INCISED

(Fig. 75)

Surface

Typically has unslipped and unpolished decorated body section, with exceptions including Figure 75, p, which has a yellowish brown slip. The usual exterior surface color is gray, varying from dark to light reddish, with interiors tending to be darker. Exteriors are hand smoothed or scraped and rarely polished prior to decorating. Interiors are poorly finished as a rule, though a few show uneven polishing, probably as a liquid retention aid.

Paste

Bentonitic clay with sandy texture. Tiny biotite platelets sparkle on the surfaces as well as in cross-sections of most sherds, though a few lack entirely this mica content. Color varies from black to orange; despite highly varied firing, on the whole the sherds are fairly hard and less friable than those of the preceding type.

Form

The only shape seems to be tecomate, apparently higher than wide; bases are flattened, with one dimpled and one recurved example (Fig. 75, s, t). Rims are rare and show a simple rounded-lip profile. One apparent support scar (Fig. 75, f) suggests that tripod supports were known. Mouth diameters vary from 22 to 30 cm. Wall thickness varies from 5 to 12 mm. with an average of about 7 mm.

Decoration

Confined to grooves or incised lines, always made with a rounded-end tool, usually at or before the leather-hard stage. Most common motif is cross-hatching. This is frequently restricted to large opposing diagonal triple-groove elements which cross each other in repeated X-fashion around the vessel wall (Fig. 75, a, h, n, p, u). There is a suggestion that a flexible 3-pointed tool was used. Some examples are very light, little more than line-burnishing (Fig. 75, b, e, j). Figure 75, o is zoned after cord-marking, a trait with Early Woodland and Asiatic affiliations (Coe, 1960: 387).

Distribution

Altamira. Frequency: 144 (2.8% of total) mostly decorated body sherds, all from Mound 19, 120 of them from Trench 19-H. Distribution parallels that of Cotán Grooved Red very closely.

External. Red rim bands, rim profiles, crossed diagonal incising and “line burnishing,” and zoned cord marking on Ocós-phase tripod neckless jars of Victoria Coarse pottery at La Victoria (Coe, 1961:50; Fig. 16) are suggestive of Monte Incised, which quite probably was the predecessor to—or a joint heiress with—the Victoria Coarse type. A more striking if superficial correspondence in decorative motif is apparent with the Machalilla complex of Ecuador, again as illustrated by Ford (1966:Fig. 5, a-f). The Ayangue Incised and Machalilla Double-line Incised designs do duplicate the Monte Incised trait of multiple (3 and 4) diagonal lines crossing in X fashion, but vessel shapes indicated are quite different and the Ecuadorian incision is made with a sharp tool on a quite dry surface (Meggars, Evans, and Estrada, 1965:110). A more probable correspondence is noted with the Machalilla Incised and Red Zoned type (Meggars and Evans, 1962:Fig. 4, f), but the shape is different still. Very much closer is a Zoned Red example (Meggars, Evans, and Estrada, 1965: Pl. 157, b), which is a simple tecomate shape with red rim separated by a deep groove from a “natural buff surface,” altogether similar to Figure 75, d of Altamira. One other similar trait at Machalilla is “one base sherd with a small concave exterior depression” (Meggars and Evans, 1962:186) which suggests the Altamira example illustrated in Figure 75, s.

Ford (op. cit.:18; Figs. 4, 5) describes incising motifs and techniques of the Orange phase in Florida with which Monte Incised finds some parallel (particularly our Fig. 75, g, q), and again the cited date of ca. 1300 B.C. favors the comparison, though shapes appear generally dissimilar in the two areas at the time. It should perhaps be emphasized, however, that the gross multiple-tool incising technique of the Orange phase does compare much more favorably with the Monte Incised examples than it does with later Mesoamerican incising, despite the more limited motifs of the Altamira type.

Temporal. Diminishing at the close of the Barra phase, it seems to have continued through the Altamira-Ocós manifestation, though possibly its presence there is due mainly to carry-up.
Figure 75. Monte Incised

TUSTA RED
(Fig. 76)

Surface
Identifying characteristic is a reddish brown surface, with a local subtype of Red-and-cream (Fig. 76, d-g). Frequent trait is red-slipped interior and plain exterior on open bowls and vases (Fig. 76, a, b). A few examples have both interior and exterior slipped red. This red color is quite distinct from that of Ocós Specular Red, its closest counterpart. Unslipped surfaces are carelessly polished and light reddish gray to brown.

Paste
Bentonitic, sandy texture, yellowish brown to black. Generally well fired and fairly hard.

Form
Vertical-wall bowls with squared rim, round-side bowls with thinned rim, and tecnomates with thickened rims and exteriorly thinning lips. Wall thickness from 5 to 11 mm. Mouth diameters of deep bowls 12 to 26 cm., other bowls 20-24 cm., tecnomates 14-16 cm.

Decoration
Horizontal groove on exterior rim rare; one example of crosshatch groove-incising.

Distribution
Altamira. Frequency: 73 rim and base sherds (less than 2% of total sample). All from Mound 19.

External. An Izapa type, where the typically red interiors are augmented by heavy gadrooned rims lacking at Altamira (S. Ekholm, in preparation). Similarity of this trait to Ocós Specular Red and Ocós Buff forms at La Victoria (Coe, 1961:Fig. 19, a, f) suggests that the Izapa Tusta Red may slightly postdate most of the Altamira examples.

Temporal. Probably restricted to the Barra phase with a possible slight carry-over into the Altamira-Ocós phase.

ALTAMIRA-OCOS PHASE

OCOS SPECULAR RED
(Fig. 77)

Surface and Paste
Since this pottery was selected for its conformity with the La Victoria type, there is little to add to that description (op. cit.:51-53). The same dark to weak red color is typical, with hematite speckles obvious in most, but not all, surfaces (specular red slips also occur on Cotán Grooved Red, a type isolated by its distinctive decorative technique and stratigraphic appearance below the typical Ocós shapes). The paste is typically bentonic.

Form and Decoration
Essentially three basic shapes may be reconstructed: thin-wall tecnomates, deep bowls, and open bowls or dishes with either grooved or beveled rims (Fig. 77). These forms all have counterparts at La Victoria (ibid.). Decoration is limited to pre-slip horizontal grooving on the lip or below the rim and occasionally on body sherds. Completely lacking is any evidence of the iridescent paint, zoned stamping or impressing, or crosshatch grooving known at La Victoria.

Distribution
Altamira. Frequency: 80 sherds (under 2%), all from Mound 19 except 1 from Mound 20 (2 were found beneath Mound 1 in 1963—see page 21).

External. La Victoria as noted above, Izapa, and rarely at other Chiapas coastal sites (Navarrete, in preparation).

Temporal. Later than Barra-phase types; in Trench 19-D it occurs stratigraphically in a definitely pre-Cuadros-Jocotal context (Table 12). It seems to be a development out of Tusta Red, but may be a direct import from the La Victoria region.

MICHIS THIN TECOMATE
(Fig. 78)

Surface and Paste
More fully described for Izapa, where it is somewhat more abundant (S. Ekholm, in preparation). Both paste and unslipped surfaces are light brown or buff-to-orange, only the rim band being slipped. Some body sections have darker smudged areas from using in the fire. Interiors are unevenly smoothed.

Form and Decoration
Almost identical to Ocós-phase Victoria Coarse tecnomates at La Victoria (Coe, 1961: 50; Figs. 14-16) except for lack of tripod feet, iridescent paint, and crosshatch grooving. Wall thickness at the rim varies from 6 to 10 mm., but there is no thickening below the lip
Figure 76. Tusta Red
h: 19-F-4. i: 19-H-10.

Figure 77. Ocos Specular Red
All Trench 19-H. a, d: Level 2. c, f, h, l: Level 4. b, e: Level 5. i, k, n: Level 7. g, h, i:
Level 8.

Figure 78. Michis Thin Tecomate
as is common in later tecomates. From 1 to 5 shallow horizontal grooves encircle the rim exterior which usually is covered with a flaky red, occasionally hematitic, paint.

Distribution

Altamira. Frequency: 36 sherds (less than 1%), 29 of them from Trench 19-H.

External. Izapa and La Victoria Ocós phase, as stated above. This type also is extremely abundant at estuary sites near Mapastepec, southwest of Altamira, where it is dominant in heavy deposits tested at Islona (Navarrete, in preparation).

Temporal. Stratigraphically post-Bana phase and assigned to Altamira-Ocós phase on the basis of typological comparisons and its failure to appear in the Cuadros-Jocotal lots from Mound 1 and elsewhere, including at Salinas La Blanca. The type seems a normal development out of Monte Incised, though the development may not have taken place at Altamira—it is so rare here that it may be imported pottery.

ALTAMIRA-CUADROS PHASE

GUAMUCHAL BRUSHED

(Fig. 79)

Paste and Surface

Altamira examples appear identical in all respects to those of Salinas La Blanca (CF: 28-39, Figs. 8, 11, 12), including granular bentonitic paste, usually dark gray core, and grayish to reddish brown unslipped surfaces. A band about the rim is polished from 1 to 5 cm. down from the lip, and the body below the shoulders is also polished carelessly with what appears to have been a smooth stone (note lower section of sherds in Fig. 79, e, g). Interiors are roughly smoothed with fingers or object which leaves light striation.

Form and Decoration

Tecomates, with bases unidentified and apparently therefore rounded, although the form at Salinas La Blanca is described as squat with flattened, sometimes dimpled, bases (ibid.). The principal identifying characteristic of the type, as defined at the type site, is a "complex profile, with a recurved, strongly convex horizontal zone or band encircling vessel just below rim band." Mouth diameter varies from 12 to 22 cm.

At Altamira Guamuchal Brushed did not occur in good stratigraphic provenience anywhere and we have relied upon the Salinas La Blanca description and sample for identification.

The typical Cuadros-phase horizontally brushed convex band is shown in Figure 79, c. The "down to the right" brushing on the convex bands of Figure 79, b, d, h, and j, are said to be more typical of the Jocotal phase, although the very pronounced convexity of the bands illustrated and the interior finger-punching of Figure 79, d are typically Cuadros (op. cit.). The cane-punched appliqué "blob-like, crude faces applied to juncture of brushed zone and polished body" are duplicated at Altamira (Fig. 79, e-g). These suggest a fish lying on its side. Indented filleting, spaced herringbone jabs, and spaced stepped jabs complete the Salinas La Blanca parallels in decorative techniques.

An Altamira Guamuchal Brushed trait also found at the type site is that of handles, double-strand and placed vertically or diagonally (Fig. 79, a, i). Neither of these handles is functional. Similar handles, but functional, are known at Chiapa de Corzo (Dixon, 1959; Fig. 54, a, b).

Distribution

Altamira. Frequency: 226 rim or filleted sherds, about 4% of total. Principally found in Trenches 19-CEF and 1-A. Also present in the 1963 Mound 1 trenches (Fig. 13, f, g; 14, lower right; 16, g, h; 19, c; 21, bottom).

External. Comparisons have been enumerated by Coe and Flannery (op. cit.) as being closest with Cotorra and Dili pottery of the Chiapas Central Depression. Other examples are found at Izapa (S. Ekholm, ms.).

Temporal. At Salinas La Blanca this is the principal type of the Cuadros phase, and its gradual replacement by Suchiate Brushed marks the transition to the Jocotal phase (op. cit.: 30-31). A similar development has been noted at Altamira in Trench 19-CEF, and a slight dominance of the type over Suchiate Brushed in the supposed constructional levels of Trench 1-A suggests a Cuadros source of refuse. The general paucity of the type in the 1965 excavations indicates that most of Altamira’s Early Preclassic occupation was post-Cuadros, at least in Mounds 19 and 20 (see remarks below for Suchiate Brushed).
Figure 79. GUAMUCHAL BRUSHED

PAMPAS BLACK-AND-WHITE
(Fig. 80)

Paste, Surface, and Form

Very completely described for Salinas La Blanca (CF: 33-35). The Altamira examples conform almost completely, except that the form inventory is less, no examples of necked jars or tecomates being identified in 1965. The type here breaks down into two principal varieties, white-rim black outslanting-wall bowls, 14 to 24 cm. in diameter (Fig. 80, a-f), and smudged bowls with thickened rims, 14 to 40 cm. in diameter (Fig. 80, g-s). The former are slipped and polished in the interior only when flaring wall, and on both sides when convex wall as in Figure 80, a; some examples have completely oxidized exteriors, but most are partially or completely smudged exteriorly with the whitish rim showing only on the interiors. The thickened-rim bowls are almost all smudged, slipped, polished, and grayish black inside, with a dark-to-light gray usually unslipped exterior; Figure 80, m, is oxidized orange throughout.

Decoration

One white-rim flaring-wall bowl has a scrape-incised design on the interior (Fig. 80, e); this is very unusual. Almost all of the thickened-rim examples have exterior circular or angular designs incised, gouged, or grooved into the still soft surface. The base sherd (Fig. 80, q) has an interior design incised with a V-shaped tool, but the remaining examples of grooving are made with a rounded-end tool.

The sherds in Figure 80, f, l, n, form a distinct group with wide excised designs and a common lip and deep bowl form; l has red paint in the excisions. The “X” or “crossed band” suggested by the design remnants on these sherds finds close counterpart in Olmec pottery. Included at the bottom of Figure 80 are two examples of the “Dark Channeled Ware” which Coe believes to be early Middle Preclassic in Central Mexico (1965:21; Figs. 31, 32). I believe the Altamira examples to be ancestral to, or possibly coeval with, those of Las Bocas and Tlatilco (see Discussion).

Distribution

Altamira. Frequency: 198 rim or decorated base sherds (about 4% of the total), of which only about 20 are the thickened-rim variety. Found in all 1965 trenches except 19-B. Also common in the 1963 lots (p. 15; Figs. 13, a-e, h; 16, d, e).

External. Variegated smudged ware is common at Altamira and throughout the Chiapas Central Depression as well as the Isthmus and western Gulf Coast regions. It is discussed at length by Coe and Flannery (op. cit.: 32), Peterson (1963), Payon (1966:87), and others. The El Trapiche white-rim variety is treated by Payon as “Bicolor Natural” and his thickened-rim variety is included under “Raspada” (op. cit.: 75-79). Payon’s Raspada is a varied type, but his examples 8, 9, 12, and 13 seem identical to the Altamira examples discussed above both as regards vessel shape, rim form, cinnabar filler and design (crossed bands, vertical and right-angle broad excisions). These Veracruz sherds are from El Trapiche mound fill or surface, but their excavator believes them to have begun toward the end of the Lower Preclassic (ibid: 77).

Smudged variegated ware may have its origin in the south. Monagrillo Incised pottery has thickened or “fold” rims and is characterized by “differential firing—exterior buff, interior gray or black” (Willey and McGimsey, 1954:59; Figs. 11, 46). This pottery, which typically has surface clouding and snudging but quite a different incised design, may be ancestral to Pampas Black-and-white. An Early Preclassic smudged black ware complex featuring thickened rims and excised designs is being uncovered at San Isidro in the Middle Grijalva basin of western Chiapas (Lowe and Navarrete, in preparation), but this apparently will not extend back to the 2,000 b.c. date postulated for the Panama manifestation.

Temporal. At Salinas La Blanca the type experienced “no pronounced chronological changes,” but the thickened-rim form is “more strongly represented in Cuadros” and the deep-bowl form (Fig. 80, a) is confined to Joootal (CF: 33, 35). At Altamira the thickened-rim variety appeared only in the Trench 1-A deposit, for which I have postulated a Cuadros source. A few 19-CEF rims are thickened but do not bear the characteristic incising or excising. Cuadros is poorly represented in the Mound 19 area and failure of this rare variety to appear there is not surprising.
Figure 80. Pampas Black-and-White

AMATILLO WHITE
(Fig. 81)
Paste, Surface, and Form
This seems to be one variety of Conchas White-to-buff as known at Salinas La Blanca (CF: 42), limited here to flat-bottom bowls with outslanting sides and deep bowls with convex sides. Slip is a good light brownish white, when unstained, confined to the vessel interior and edge of lips, and carefully polished. The polishing has rubbed streaks through the slip. Paste is rather fine bentonitic, well-fired brown to orange, with gray core. Diameters of open bowls average 38-40 cm. and wall thickness 9 mm. Exteriors are scraped but left very uneven (Fig. 81, b right).

Decoration
One or two shallow post-slip lines carelessly engraved 5-7 mm. below the interior rim with a fine rounded-end stylus.

Distribution
Altamira. Frequency: 148 sherds (about 3%) from all locations.
External. Salinas La Blanca (see above) and Izapa; the streaky white slip and flaring-wall form also resemble some White Monochrome sherds of the Cotorra phase at Chiapa de Corzo (Dixon, 1959:7-8; Fig. 4).

Temporal. Seems primarily to be of Early Jocotal type, with a bare beginning in Cuadros, and soon giving way to Siltepec White, which is little more than Amatillo gone sloppy; in dirty lots it is impossible to distinguish between the two.

CUCILLA RED-ON-WHITE
(Fig. 83)
Paste, Surface, and Form
Conforms to the harder, better polished examples of Conchas White-to-buff in sherd sample from Salinas La Blanca, and to the necked jar and deep bowl forms (CF: 42; Fig. 21, i-q). The latter are barrel-shape with slightly restricted orifice; mouth diameters average 12-14 cm., and the thin walls vary from 3 to 6 mm. The paste is well fired, hard, and dark yellowish brown to grayish brown. Exteriors are slipped a light brownish white and polished until more of the paste shows than the thin slip. Surface color ultimately depends upon the degree of oxidation of the paste.

Necked jars (2) have mouth diameters of 14 and 12 cm., neck height of 5 and 3 cm., and wall thickness varying from 4 to 8 mm. The neck and exterior body surfaces are highly polished in the same manner as the deep bowls; body interior is smoothed by hand or rag.

Decoration
Post-slip engraving of horizontal lines around rim of deep bowls, with an early form of curved line-break (Fig. 83, a).

Distribution
Altamira. Frequency: 25 (less than 1%). Confined to the lower levels of 19-CEF and 1-A.
External. Salinas La Blanca, with close parallel at Padre Piedra and Chiapa de Corzo (Vergel White-to-buff, p. 44; Fig. 55; also Dixon 1959:8; Fig. 2, White Monochrome vertical-wall bowls, and p. 10, Fig. 7, jar necks).

Temporal. Begins in Cuadros, but best Altamira examples are from the Early Jocotal water hole in Trench 1-A. By Late Jocotal the type gave way to Tacaná Incised, a much inferior ware.
APPENDIX—ALTAMIRA POTTERY

Figure 81. Amatillo White

Figure 82. Tilapa Red-on-white

Figure 83. Cuchilla White
MENDEZ RED RIM
(Fig. 84)
Paste, Surface, and Form
Another well-defined and already well-described Salinas La Blanca type, the red-rim variety of Guamuchal Brushed (CF: 27-28). Tecomates with same paste surface and decorative characteristics as Guamuchal Brushed, including an example of the Altamira trait, tiny vertical double-strand handle (Fig. 84, d). The red rim band covers the interior lip and from 14 to 18 mm. of the rim. Rim diameters vary from 14 to 18 cm.; wall thickness varies from 8 to 14 mm.

Decoration
Diagonal and horizontal punctation, diagonal incising, direct and curvilinear line impressing, including paired arcs.

Distribution
Altamira. Frequency: 60 rim sherds (about 1%) in Mounds 19 and 1 (see also p. 18, Fig. 19, a, c).
External. Salinas La Blanca, Izapa, and Central Chiapas sites (ibid.).
Temporal. Begins in Cuadros, but most Altamira examples are probably Early Jocotal.

MAPACHE RED RIM
(Fig. 85)
Paste, Surface, and Form
Conforms generally to published description at Salinas La Blanca (CF: 25-26). Tecomates, mouth diameter 10 to 14 cm., wall thickness 5 to 14 mm. Paste granular bentonitic, dark gray to reddish brown. Unslipped, rim band only polished. Interior usually very rough and smudged a darker gray or brown than the exterior.

Decoration
The typical Mapache sherd is Figure 85, b, with a carefully smoothed exterior and a line-burnished arc. The brushing on a, c, and d is apparently not typical of the original type, but these examples seem to fit here better than with the Mendez type above, due to their lack of the convex band, and the consistent presence of the row of small punctations. The red paint in the rim band is very weak and has all but disappeared on the three brushed examples.

Distribution
Altamira. Frequency: 21 rim sherds (less than 1%) from all mounds tested; also found in 1963 (Fig. 19, b).
External. Salinas La Blanca.
Temporal. Considered as mainly Cuadros phase at Salinas La Blanca.

TEOFILO SMOOTHED
Similar to preceding but without painted rims (CF: 56). Only 11 examples were found at Altamira.

ALTAMIRA EARLY JOCOTAL SUBPHASE
SILTEPEC WHITE
(Fig. 86)
Paste and Surface
Paste bentonitic with many large granules, some crossing the entire core. Color varies from light yellowish brown through reddish brown to yellowish gray, depending upon the degree of firing. Firing is generally poor and the sherds are crumbly and sandy feeling; most surfaces can be worn away with the thumb. Many examples of Siltepec White are grayish throughout; inability to distinguish either shape or chronological differences for these sherds leads to the conclusion that they are simply over-fired Siltepec.
A dull white to brownish white slip has been given the interior only of flat-bottom flaring-wall bowls, and most of this usually has eroded away (note Fig. 86, a-d right hand, interior views). The exteriors of open bowls were carelessly smoothed and left unslipped and unpolished (Fig. 86, a-d, left hand exterior views). Larger examples of the vertical-wall bowls are slipped on both interiors and exteriors and afterward given an even polish.

Form
The typical variation and distribution pattern of Siltepec White shapes are shown in Tables 10 and 14. It is practically an outslanting-wall, flat-bottom bowl type, the only other shape having appreciable numbers being vertical-wall bowls (Fig. 86, g, h). Other forms include restricted-orifice jars (Fig. 86, e, f).

Decoration
The only decoration is an occasional post-slip incised line around the interior rim.

Distribution
Altamira. Frequency: 2,150 rim sherds
Figure 84. MENDEZ RED RIM

Figure 85. MAPACHE RED RIM
(41% of total 1965 sample). This is the most abundant pottery type at Altamira, dominant in all trenches. Its persistent growth pattern has been mentioned in the trench discussions.

As already mentioned, Siltepec White seems to be a poor man's variety of Amatillo White, which it supersedes, and a local deterioration of Conchas White-to-buff as known at Salinas La Blanca.

External. Common in early Izapa mound fill (S. Ekholm, ms.). Not recognized as a type elsewhere, although it has clear resemblances to some Conchas White-to-buff (CF: 42-44). This, apparently, is not only a cheapened variety of the Salinas La Blanca white ware, but a much popularized one as well. Conchas White at its parent site is also predominantly a flat-bottom, outslanting-wall bowl type (63%; op. cit.: 42), but it seems to make up a much smaller proportion of the total pottery complex.

Temporal. Begins in Early Jocotal as a popularization of Amatillo White and reaches a climax in most trenches one or two levels from the surface, being the principal constituent of the Late Jocotal ceramic complex.

ARENERA RED-ON BUFF

(Fig. 87)

Paste and Surface

Outwardly this seems only a pale brown, red-washed variety of Siltepec White, but a number of consistent characteristics set it apart. The paste is bentonitic with grayish to brownish cores as usual, but the inclusions are smaller as if the clay had been better selected; oversize grains and chunks of iron oxide are completely lacking in most examples. The resulting ware is more compact, with a surface less sandy and more resistant to abrasion. Interiors only are polished but the red wash may be applied to either (and rarely both) surfaces. This wash is thin and fugitive, of a reddish brown color (grayish reddish orange to strong brown). Exteriors are poorly smoothed (Fig. 87, c, left.)

Form

Limited to flat-bottom bowls with outslanting sides and rare incensarios (or "clay seats"). Wall thickness varies from 9 to 14 mm. The type is slightly thicker walled than Siltepec White; mouth diameters also tend to be a little larger.

Decoration

Almost confined to rather broad pre-slip grooving, made with a rounded-end tool, on the inner rims of outflaring-wall bowls. Grooved lines are double and include the "double-line-break" motif (Fig. 87, c, d). A single example of post-slip incising with a sharp instrument appears on a vessel floor (Fig. 87, b).

Distribution

Altamira. Frequency: 369 sherds (7% of total), mostly rims, from all 1965 excavations (combined with Siltepec White in 19-B).

External. Unidentified elsewhere.

Temporal. Restricted to the Altamira-Jocotal subphases.

SUCHIATE BRUSHED

(Fig. 88)

Paste, Surface, and Form

Paste and surface are the same as at Salinas La Blanca (CF: 30-32) where it is the dominant type during the Jocotal phase. It is the second most popular type at Altamira (following Siltepec White) and by far the most abundant tecomate, the only shape in the type. It is distinguishable from Guamuchal Brushed principally by its simpler profile, lacking the convex zone just below the rim band, and decorative techniques such as exterior rather than interior finger-punching and raised indented filleting rather than appliqué. There is a great variety of decorative detail in both types, and distinctions are often hard to make even at the type site (ibid.) and more so at Altamira, where the Cuadros-Jocotal relationship is confused. A most typical Suchiate tecomate is shown in Figure 15, an example recovered intact in 1963; other typical 1963 profiles are shown in Figure 19, d-g. Figure 88 shows some of the better 1965 examples of decorative technique rather than the more common sherds which conform more closely to those illustrated by Green and just cited.

Decoration

Conforms to Salinas La Blanca, with all examples brushed below a narrow polished rim band; the brushing is sometimes extremely light (Fig. 88, d) and often crossing (Fig. 88, a). Grooving emphasizes occasional hori-
Figure 86. *Siltepec White*

a-d: exterior at left, interior at right.
a: 19-E-3.
b: 19-E-2.
c: 19-E-2.
d: 19-E-2.
e: 19-E-1.
f: 19-E-1.
g: 19-E-1.
h: 19-B-4.

Figure 84. *Alcoba Beige-Ruff*

b: 1-A-5.
c: 19-F-4; exterior at left, interior at right.
Horizontal rim band delineators and paired down-and-to-the-left diagonals and arcs (Fig. 88, a, c). Indented filleting on the brushed zone is made by raising the fillet between the fingers (Fig. 88, b). Exterior finger punching is infrequent but widespread (Fig. 88, d).

Distribution

Altamira. Frequency: 608 rim and filleted sherds (12% of total), found in all 1965 trenches. Also common in the 1963 excavations in the southern part of the site.

External. Distribution of the Salinas La Blanca manifestation (C F:31-32) is traced over a wide area extending from central and Pacific Coast Guatemala through central and coastal Chiapas. A generally similar brushed tecomate type seems indicated for the Ajalpan phase in the Tehuacán Valley (MacNeish, 1962:37) and for San Lorenzo (NWAF collection).

Temporal. Marker type for the Jocotla phase at the type site of Salinas La Blanca, and at Altamira it is considered in a similar chronological sense, no obvious deviation being noted between the early and late sub-phases. We have taken its usual superiority over Guamuchal Brushed to be indicative of the Jocotla phase occupation. The only contrary situation (except for the statistically poor Trench 20-A) was found in the lower levels of Trench 19-CEF and in the upper fill material of Trench 1-A. Suchiate Brushed tecomates always maintained a secondary role to the Siltepec White flat-bottom bowls; we have postulated a functional reason for this Altamira departure from the Salinas La Blanca norm.

XQUIC RED

(Fig. 89)

Paste and Surface

A distinctive type with a well-knit, hard-fired bentonitic paste having a consistent medium texture. Inclusions lack the frequent over-large grains normal to most Altamira pottery and indicate careful clay selection or preparation; the type resembles and surpasses Arenera Red-on-buff in this respect. Cores are wide, varying from reddish gray to reddish brown. Surface is light grayish brown to buff, well smoothed and polished on all slipped surfaces; unslipped surfaces are poorly smoothed and haphazardly polished.

The slip varies from weak to dark red; some examples are obviously hematitic, with abundant speckles, while others are not but with no appreciable color difference (specular sherds are included in this type rather than in Ocós Specular Red because of distinguishing shape and decoration peculiarities). Flat-bottom bowls are slipped on the interiors and exterior lips only, other shapes on both surfaces.

Form

Outslanting-wall, flat-bottom bowls (Fig. 89, a-g), round-side bowls (Fig. 89, h), and barrels (Fig. 89, i). A few round-side bowls with notched labial ridges appear (Fig. 25, g), but lack incised decoration.

Decoration

Post-slip incising and excising on the inner rims of all flat-bottom bowl sherds and plain incision on the exterior of other forms. The outstanding characteristic of the type is the combination of scrape-excising and groove-incising on the flat-bottom-bowl rims (Fig. 89, a-c), with one example of a more complex design in the same technique on the vessel floor (Fig. 89, g; this example has a motif identical to some of Culebra Gray and Tacana Incised White described below). Apparently done at the leather-hard stage, the surface was literally scraped away, leaving exposed a rough, sandy, contrasting zone of the buff paste. The incised horizontal grooves were sometimes rubbed over with a hard, dull V-shaped tool, giving them a smoother finish. Figure 89, b seems an elaboration on the "double-line-break" motif.

Incised patterns on the exterior of the round-side bowls and the barrel are more complex, but were also engraved through the slip, apparently with a sharp tool held sideways and leaving a ragged edge.

Distribution

Altamira. Frequency: 66 sherds (slightly over 1% of total), 60 of them from Trench 1-A. The "Red-on-buff" type briefly described for the southern part of the site (pp. 20-21) includes other good examples of Xquic Red from Mound 1 (Fig. 25, a, b, i).

External. An Izapa type where it is somewhat more abundant and described more fully (S. Ekholm, ms.). It also seems to be a late, local variant of Pacaya Red, a minor type at
Figure 88. Suchiate Brushed

Figure 89. Xoúc Red
Salinas La Blanca, but the principal Pacaya form, necked jars, are not identified at Altamira, and the scrape-excised decoration is unknown in the Guatemala type.

Temporal. Apparently confined to the Jocotal phase, although its rarity in Jocotal deposits characteristic of Mound 19 and its relative abundance in the fill material of Trench 1-A raise the question as to whether it might not be a largely Cuadros type carried up. The indented labial-ridge lip form of Figure 25, compares rather well with Ocós Specular Red and Ocós Buff indented labial ridge examples (Coe, 1961; Figs. 18, 21, k, l).

CULEBRA GRAY
(Fig. 90)

Paste and Surface
A type in the Ocós Gray group difficult to separate from gray-fired examples of white wares at Altamira, but characterized by a harder paste and a streaky whitish-gray slip. The clean, uneroded, examples from the undisturbed water-hole deposit in Trench 1-A were easy to identify (Fig. 90, b, d) with Salinas La Blanca type samples, however, and served as a guide in typing the additional sherds. Paste is typically light gray throughout, but ranging to dark brown. As indicated, the slip where present is a light gray to yellowish white, but is ordinarily eroded away.

Form
Primarily flat-bottom bowls with outslanting sides very similar to Siltepec White in all particulars. Additional shapes are shown in Figure 90 and include necked jars with slightly flaring pointed-lip rims (b, d), and flattened-bottom jars with unknown rim shape (a, c); the former has a lightly recurved or “dimpled” concave base similar to that of Figure 75, s.

Decoration
None, ordinarily, the engraved and excised motifs illustrated (Fig. 90, a, c) being exceptional; the latter example has direct parallels in Tlacaná Incised White (see below).

Distribution
Altamira. Frequency: 328 sherds (about 6% of total), almost all rims, and nearly all from Trench 1-A; presence is rare but constant in Mounds 19 and 20, being unidentified in Trench 19-D only. This also seems to be the type identified as Jibalba Gray in the 1963 investigations (pp. 21-22, Fig. 27).

External. Except for Salinas La Blanca (CF: 46), the type has not been identified elsewhere.

Temporal. Considered to be a critical marker of the Jocotal phase.

ALTAMIRA LATE JOCOTAL SUBPHASE

TACANA INCISED WHITE
(Fig. 91)

Paste, Surface, and Form
Isolated primarily on the basis of thin walls, incised designs, and vessel shapes limited to deep, convex wall or restricted-orifice bowls, this type is superficially very similar to Amatillo White, which it apparently replaces. It might also be considered a fine-ware variety of Siltepec White. Exteriors, as well as interiors of deep bowls, are always slipped a grayish or yellowish white, but this has usually eroded away in large part, leaving a fine sandy surface. Interiors of restricted vessels are poorly finished and unpolished. Paste is bentonitic and usually, but not always, finer than usual at Altamira, favoring the thin walls characteristic of the type. Paste color may vary from reddish yellow to reddish brown or be grayish clear through. Surfaces reflect the same variation, without regard to shape or decoration. Wall thickness varies from 3 to 9 mm., with an average of about 5 mm.

Deep bowls have walls only slightly convex, with base diameter less than mouth (see Fig. 23, a for reconstruction of this vessel shape). Mouth diameter averages about 20 cm. Small tecomates and collared jars are less common (Fig. 91, t, u).

Decoration
Post-slip incision is common to all sherds, usually in combinations of lines and arcs, but frequently limited to a single horizontal line on the exterior rim about 5 mm. below the lip. Globular body surfaces had more complex designs but not enough remains to permit restoration (Fig. 91, p, q, t, u). The incised designs are sometimes accompanied by wider excised “hooked” lines forming an oft-repeated motif appearing on the vessel floors (Fig. 91, b) as well as walls (Fig. 91, d, e, h). This suggests the jaguar-claw or bird-beak motif common in Olmec art. The excisions may be cut in two opposing strokes of a sharp tool held at an angle (Fig. 91, d-f), or scraped (Fig. 91, a-c, g-i).
Figure 90. Colebra Gray

Figure 91. Tacana Incised White
Distribution

Altamira. Frequency: 134 (about 2.5% of total) decorated rim, base, and body sherds, found in all of the 1965 trenches, except 19-A. Also found (as “White-to-buff”) in small numbers in Mounds 1, 6, and 10 in 1963 (p. 20; Fig. 23).

External. With little doubt this is the Temblor White type reported at Salinas La Blanca (CF: 44-45), but for lack of a type sample the definitive identification was not made. It is also present in small numbers in early Izapa mound fill (S. Ekholm, ms.). It resembles Cotorra phase Monochrome White types at Chiapa de Corzo (Dixon, 1959; Figs. 2, a, b; 18; 23, b-i; 36, b-f). A close stylistic relationship to Polished White (Blanco Pulido) of the early Chalcatzingo occupation in Morelos is also apparent (Piña Chan, 1955: Lam. 7).

Temporal. A Late Jocotal type, as both Altamira and Salinas La Blanca data (for Temblor White) indicate.

DESVIO SMOOTH TECOMATE
(Not figured)

Remarks

A nondescript type identified only in Trench 19-CEF, it has the usual characteristics of Suchiate Brushed except that the brushing and other surface decoration are lacking. These plain tecomate rims resemble those of Conchas Red Unburnished and Conchas Brown Unburnished (Coe, 1961:Fig. 24, b, k). Plain undecorated rims also made up 34% and 30% respectively of the unslipped tecomates in the Pits 50 and 38 collections at Chiapa de Corzo (Dixon, 1959: 16, 33), which correspond roughly to the Cotorra and Dili phases.

ALTAMIRA LATE CRUCERO SUBPHASE

LATE CRUCERO RED-ON-ORANGE
(Fig. 92-A)

Paste and Surface

Well sorted, medium fine to medium bentonitic paste lacking any unusually large inclusions; core color ranges from very dark gray to yellowish brown and even light red in completely oxidized sherds, with surfaces a light brown. An even polish and a light, thin, reddish brown to moderate orange slip is applied to all surfaces except jar interiors. Firing is good. This is a well-made pottery which resists erosion better than earlier types.

Form

Principal shapes are flat-bottom bowls with outslanting walls and either direct or everted rims (Fig. 92-A, a-e); this is not the typical wide-everted rim of the Late Preclassic but a refined sort with rarely more than a single groove and frequently having either rim protuberances or facets. Small conical nubbin feet occur infrequently. A single small tecomate rim and occasional medial flanges combine with wide-mouth, low-neck jars to round out the shape inventory. Wall thickness ranges from 5 to 10 mm.

Decoration

Bands of red to reddish brown paint are applied to rim and base areas. In some instances this red may have been applied to the entire vessel exterior. Incisions form small linear and stepped designs.

Distribution

Altamira. Frequency: 67 sherds (less than 1.5% of total), all from Trench 1-A. Other examples were found in 1963, from Mound 1 and surrounding area (Figs. 28, h; 29, a, b).

External and Temporal. Apparently same as or very similar to the Crucero Red-on-orange at La Victoria (Coe, 1961:Fig. 37, a-f). Also close similarity to some Early Protoclassic cache vessels at Izapa (report in preparation). Absence of detectable Usulután negative striping on both the Altamira and La Victoria examples seems to set this pottery apart from the Crucero phase orange wares of Salinas La Blanca, despite such correlation made by Coe and Flannery (1967: 48-49). Nevertheless, the Figure 92, a-c, e sherds are typical Usulután rim forms and it may be that sample smallness accounts for the absence of observed Usulután technique, a process noted for its uneven “take”, with large sections of common vessels failing to show the decoration. Red paint over Usulután is considered a relatively late trait, extending into the Early Classic.
Figure 92. Late Crucero Pottery

LATE CRUCERO ORANGE
(Fig. 92-B)

Paste, Surface, Form, and Decoration

Medium coarse light brown paste with dark gray cores is common. A heavy orange to reddish brown slip is applied to usually poorly polished exteriors or interiors (both only on deep bowl forms). Slip tends to flake or rub away, particularly on rougher examples. Shapes are well represented in Figures 92-B, 28, a-g; 29, c-h. Walls are slightly thicker than in the preceding type, averaging 8 to 10 mm. Decoration is limited to indentation and coarse post-slip incision.

Distribution

Altamira. Frequency: 58 sherds (about 1%) all from Trench 1-A. Also found in the 1963 trenches (as Conchas Orange).

External and Temporal. Seems similar to the Conchas Orange of the Crucero phase at La Victoria (Coe, 1961: Fig. 36, n-u). Some resemblances are noted with Early Proto-classic cache pottery at Izapa.

LATE CRUCERO PLAIN
(Fig. 92-C)

Comment

A coarse unslipped ware so similar to the preceding in basic shapes (except for the addition of flaring-jar necks) that it may be an unslipped variety thereof, or in some cases simply eroded. Surface color is light gray to light brown, with exteriors often unpolished. Confined to Trench 1-A (32 sherds). A poor diagnostic, unidentified elsewhere, but may correspond to one or more of the Crucero coarse and plain types described for Salinas La Blanca, Crucero phase (CF: 56, 62).

Clay Artifacts

FIGURINES

In 1965 a total of only 14 recognizable head fragments (all illustrated in Fig. 94) and a larger number of body and limb fragments were recovered. They were found in all proveniences, including the earliest levels, but no intact head was found in a purely Barra-phase deposit, unfortunately, and few others in any pure phase association. It can safely be assumed, nonetheless, that all our figurines are Jocotal or earlier, that they all are Early Preclassic and that they thus form a unique collection, comprising together with the few Ocós and Jocotal examples in Guatemala the earliest figurines known in southern Mesoamerica. The Olmec figurines associated with the recently identified San Lorenzo phase are of an approximately contemporary date (Coe, 1966:5-6) and offer a further parallel in that their "style of eyes is very different from the usual La Venta or Conchas (Middle Formative) type, no punching being evident."

The smallness of the present collection prevents forming an adequate typology, but they are ordered opposite (Fig. 93) in terms of eye pupil formation, since this is the characteristic which so sharply sets them apart from the succeeding Conchas-phase figurines which shared a deep punctate eye tradition extending from La Victoria across Central Chiapas to La Venta and northward at the beginning of the Middle Preclassic. The Altamira figurines in contrast have rather inconspicuous pupils formed either by a small narrow vertical punctation, a vertical ridge, or a small round punctation. In all instances shown opposite, the eye itself is formed by two opposed wedges pressed into a slightly raised eye zone of soft clay; these eyes are not appliqué, but modeled. The vertical-ridge pupil type is formed by two deep narrow punctates which leave the "pupil" as an elevated divider.

The two round-pupil figurines may be assumed to be late; the hollow example (Fig. 94, I) is from a surface level, and the large toothy example (Fig. 94, k) is from the mixed Mound 1 fill material and apparently is Late Jocotal.
Figure 93. Early Preclassic Figurine Heads from Altamira, 1965 Excavations. Arranged by eye type; for identification, see Fig. 94.
The Altamira figurines are further differentiated by their lack of the large hollow earspool common to Conchas figurines. A few here have small solid round earplugs (Fig. 94, a, b, h). The figurines in general are closer to the Ocós types (Coe, 1961:Fig. 39) than to Conchas models, but all in all they stand quite apart from described types anywhere in spite of being within the Mesoamerican tradition in terms of modelling techniques. The long head with little hair and no headdress, wide eyes, broad nose, and down-turning mouth with full lips are all traits more suggestive of the Olmec carved jade and serpentine figurines of La Venta than of any known pottery type (cf. Drucker, 1952: Pls. 46-50; Drucker, Heizer, and Squier, 1959: Pls. 32-36). The last-cited authors postulate considerable antiquity through re-useage for the stone figurines in question (op cit.: 161), and the Jocotal (or late Cotorra) date probable for the Altamira figurines makes them logical sharers of an Olmec prototype (cf. the Cotorra phase figurines illustrated by Dixon for Chiapa de Corzo, 1959: Fig. 53, a, b).

One apparent example of appliqué eyes is Figure 94, m, which has a definite Ocós or Barra-phase provenience—the eye is formed by three careless vertical jabs into a blob of clay set into the eye recess. Figure 94, n also appears to have round punched appliqué eyes, forming an altogether unique type at the site.

The Altamira figurines are almost universally of a light brown sandy paste, usually unslipped and unpolished. Only one head (Fig. 94, l) but several limb and body fragments are hollow.

The relative abundance of clay figurine fragments at Altamira, as contrasted to Salinas La Blanca which has only one, was also demonstrated by the 1963 trenches (pp. 6, 24; Figs. 30-33). Since we believe the two sites to have been contemporary during the Cuadros and Jocotal phases, the near lack of figurines at the Guatemala site is puzzling. It is tempting, indeed, to fall back on that old belief that figurines are fertility cult objects associated with agricultural practices, and that Salinas La Blanca, being more of a gathering, animal collecting, and fishing community principally dependent upon an estuary-lagoon economy, had little use for the figurines associated with cultivation practices. Altamira, apparently dependent upon sowing and reaping, may have relied more heavily upon the little idols to guarantee safe harvest. It is much more probable, however, that the discrepancy is due to faulty sampling at Salinas La Blanca where the two small pits were confined to a single mound summit. More figurine fragments at Altamira were found in slope areas (at the edges of Mounds 1 and 19) and the total area tested was much greater.

FIGURINE BODIES AND LIMBS

Figurine bodies represent the same variety in size and character as the heads (Fig. 95), with few showing obvious slip or polish. Some trunks are hollow but thick walled (Fig. 95, h), and heads are characteristically joined with a tenon entering a socket between the shoulders. Limbs are sometimes cherubic and well modeled or reduced to fat stubs with rudimentary foot or hand indications. Feet are frequently arched. Figures are usually seated.

A curious body type is represented by Figure 95, c, which is unique both for its unusual fine buff paste and heavy bust and vestigial arm treatment; this is an Ocós or Barra-phase specimen. Another trunk section with similar fine paste and rounded protuberances was found in 19-H-14, a Barra-phase level. Exaggerated breasts and rounded shoulder-extension arms are characteristic of the Valdivia figurines (Evans and Meggers, 1958: 181), but lacking additional evidence a presence here of the Early Ecuador type cannot be argued. In this regard nevertheless it is worth noting that a possible Valdivia-type figurine head is reported at the important and not far distant Preclassic site of Laguna Zope in the Isthmus of Tehuantepec (Delgado, 1965: 12; Fig. 10).

ZOOMORPHIC FIGURINES

The few zoomorphic figurines from the 1965 excavations include bird whistles and what appears to be a dog effigy head (Fig. 95, l-o). The whistle has two stops on the chest.
Figure 94. FIGURINE HEADS

The curious fat little animal in Figure 95, 1 bears carelessly incised striations on its right side which seem ancient. A tail has broken off from the right side of the rear, over a perforation (an additional hole penetrates the underside or stomach area). The original form of the head is problematical, but the present eye indications seem genuine and together with the fracture scar suggest that a very narrow proboscis has been broken away. Four stubby round-end feet support the effigy upright, though both head and tail incline to the right. A possible analogy to this specimen may be the "zoomorphic benches" of late Valdivia (Evans, Meggers, and Estrada, 1959:68-69, Fig. 75). The Ecuadorian examples, thought to represent anteaters, are flat on top (presumably as seats for clay figurines) but otherwise are similar in size and general aspect to the Altamira example. One of the Valdivia objects has carelessly incised lines also, but these appear much more uniformly applied. The Altamira effigy is of a fine orange paste not typical of Altamira and is from 19-H-8, a lot containing 64% Barra-phase ceramic types.

POTTERY NETWEIGHT OR BOBBIN

A single example of what may be a pottery netweight or bobbin was found in Level 1 of Trench 20-A (Fig. 95, k). Similar modeled "bobbins" are late Postclassic at Naco, Honduras (Strong, Kidder, and Paul, 1938: 34, Pl. 4, i), and this example is probably a late arrival on the Mound 20 surface.

It is noteworthy that no example was found at Altamira of the notched-sherd netweights frequent at contemporary coastal sites such as La Victoria (during both Ocós and Conchas phases—Coe, 1961:Pls. 51, g; 59, b), Islona near Mapastepec (Ocós phase—Narvaez, in preparation), and LaVenta (Drucker, 1952:Pl. 45).

SHERD DISKS AND SCRAPERS

Of the 18 reworked sherds found in 1965 (Fig. 96) 12 are made from Barra and Ocós phase pottery types. These objects have a wide distribution over Mesoamerica and in addition were common in the Machalilla phase of Ecuador (Meggers, Evans, and Estrada, 1965: Plate 159) where it is suggested that the disks might have been used as bottle stoppers. No bottles are recognized in the Altamira ceramic inventory, and these particular disks are too small to have permitted them to cover jar necks, an oft-observed function elsewhere in Chiapas. Use as counters in a game or abacus has been postulated for small sherd disks such as these, since they are characteristically formed from attractive sherds (Coe, 1961: 104).

POTTERY EARPPOOL

One fragment of a pottery "napkin-ring" earspool was found in 19-H-11, a Barra-phase level. The tiny fragment (about ⅛ complete) was lost during the processing of Trench H, but was approximately 17 mm. high, having a probable diameter between 3 and 3.5 cm. It was dark brown, highly polished, undecorated, thin and slightly concave with one edge flaring.

Napkin-ring earspools have been cited as one evidence of Middle-American influence in South America (Coe, 1960:370; Figs. 4, 5). These ornaments appear over a wide area of Mesoamerica on Middle and Late Preclassic horizons and were especially common in Conchas deposits at La Victoria, though rare in the Conchas 1 subphase, with none found in the Ocós phase (Coe, 1961:102). They appear rarely in the Chorrero phase of Ecuador (Evans and Meggers, 1957:240), but not in Peru (ibid.:245). Coe (op. cit.) believed that these handsomely made objects diffused from La Victoria to the Chorrero sites due to their greater known abundance in the Conchas phase of the former site and in Mesoamerica generally. The Altamira example is found in a straight Barra-phase context (some carry-down might be conjectured for so small a fragment, but regardless of such it must be pre-Conchas, since no Conchas complex is identified at this site). Accepting the Barra-phase provenience, there is still a possibility of an interchange with Chorrero, since the postulated 1600-1300 B.C. dates for Barra overlap the early end of the 1500-500 B.C. range of Chorrero. The direction of diffusion is a matter of speculation in this case, since nowhere else in Nuclear America are these objects known to appear at so early a date.
APPENDIX—ALTAMIRA POTTERY ARTIFACTS

Figure 95. Bodies and Limbs, Net-Weight, zoomorphic figurines

Figure 96. Reworked sherds

Stone Artifacts

CHIPPED IMPLEMENTS

The only chipped stone implements recovered at Altamira in the 1965 excavations were obsidian flakes; these are presumably scrapers or rude knives for cutting, though about half lack evidence of usage (Fig. 97, a). Similar flakes appear occasionally in most Altamira trenches (p. 27), but occurred in striking abundance only in the Mound 19 excavations, most particularly 19-H. The 19-H obsidian flake count is shown in Table 17. The obsidian is gray with black banding.

Comparison of the obsidian flake count with the associated sherd count (Table 13) shows some apparent relationship with Barra-phase pottery type percentage peaks. Flake quantity climaxes in Level 11 and drops off sharply in Level 10, just one or two levels earlier than said pottery peaks. There is no doubt that obsidian flaking was a Barra-phase industry and that the Mound 19 surface was the center of this activity then and later.

Evidence for the local manufacture of the flakes is the substantial percentage of examples showing no signs of use and therefore supposedly wastage. Detailed examination was made only of the Level 7 sample illustrated as typical of the lot. The breakdown is as follows: probably reworked, 6; apparently unreworked but showing usage, 24; lacking evidence of use, 25. The flakes not showing usage were expectedly those of smallest size and/or rough examples without keen edges.

Function of the abundant obsidian flakes remains problematical, though undoubtedly they had to do with food preparation or craft specialization such as wood or leatherworking; a palm-fiber industry is a possibility. It has been brought to my attention that similar small bits of flint or jasper are driven into wood blocks and used as manioc scrapers in various areas of the Caribbean (Ripley Bullen and M. Coe, personal communication). The brittle nature of obsidian makes it less suitable for such a utilization, but some such function, possibly setting the flakes into green palm wood, appears a distinct possibility.

POLISHED ORNAMENTS

Three polished greenish stone objects seem to have been ornaments. The fragment shown as Figure 97, b appears to be of jadeite and is possibly the middle section of a celt or chisel such as those common in the ceremonial caches of La Venta (Drucker, Heizer and Squier, 1959:Pl. 41). It is highly polished, bluish-green, and Late Jocotal or earlier. The object in Figure 97, c is of a fine-grain grayish green stone finely polished on all surfaces but with a dull luster. Of Early Jocotal or earlier date, this stone is of unknown utility as an ornament and may have been a polisher or even a throwing-stick appendage. The spoon-shape pendant (Fig. 97, d) is also of Early Jocotal or Cuadros date but has a single hole for suspension, and is of a grainy stone distinct from the preceding. The concave surface was formed by sawing and subsequently given an extremely high polish, making it an excellent reflector.

PECKED AND GROUND IMPLEMENTS

Metates and Manos. Metate fragments were found in most of the 1965 trenches but never abundantly. The deep, open-end trough metate (Fig. 97, e) appears to be most typical of the Jocotal occupation; the unusual depth of this type of metate, known from repeated fragments in Mound 19, seems intentional rather than the result of wear. Other metate and mano fragments compare with those previously described (pp. 28-30) and are too few and scattered to permit chronological observations (but see page 59).

Table 17. OBSIDIAN FLAKE COUNT, TRENCH 19-H, ALTAMIRA

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obsidian</td>
<td>25</td>
<td>54</td>
<td>22</td>
<td>31</td>
<td>17</td>
<td>39</td>
<td>55</td>
<td>65</td>
<td>57</td>
<td>23</td>
<td>103</td>
<td>66</td>
<td>16</td>
<td>573</td>
</tr>
</tbody>
</table>
Figure 97. STONE ARTIFACTS

Stone Bowls. The few stone bowl fragments found at Altamira (Fig. 98) are significant for their degree of resemblance to prototypes appearing as early as the Abejas phase in Tehuacán caves (ca. 3,400-2,300 B.C.; MacNeish, 1962:36; Fig. 9) and continuing there through the Ajalpan phase (estimated ending date 850 B.C.; MacNeish, 1964:36; Fig. p. 33). The Altamira examples are of a well-polished dense basaltic stone except for Figure 98, b which is roughly pecked and more porous. Examples b and e are from clearly Barra-phase contexts and d probably so. Examples a and c are from mixed contexts running as late as Jocotal but probably as carry-ups from the Barra-phase occupation (note absence in the 1963, post-Barra phase, collections).

Figure 98. Stone Bowls
REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1951</td>
<td>A Study of Three-pronged Incense Burners and Rim-head Vessels in Guatemala. ibid., No. 101.</td>
</tr>
<tr>
<td></td>
<td>1966a</td>
<td>The Maya. Ediciones Lara, Mexico.</td>
</tr>
<tr>
<td>Delgado, Augustine</td>
<td>1965</td>
<td>Archeological Reconnaissance in the Region of Tehuantepec, Oaxaca, Mexico. Papers of the New World Archaeological Foundation, No. 18, Provo.</td>
</tr>
<tr>
<td>Dixon, Keith A.</td>
<td>1959</td>
<td>Ceramics from Two Preclassic Periods at Chiapah de Corzo, Chiapas, Mexico. Papers of the New World Archaeological Foundation, No. 5. Orinda.</td>
</tr>
</tbody>
</table>
EVANS, Clifford, and Betty J. Meggers
EVANS, Clifford, Betty J. Meggers, and Emilio Estrada
FORD, James A.
García Payón, José
GORDON, G. B.
HEIZER, Robert F.
LATHRAP, Donald W.
LORENZO, José Luis
Lowe, Gareth W.
1959 Archeological Exploration of the Upper Grijalva River, Chiapas, Mexico. Papers of the New World Archaeological Foundation, No. 2. Orinda.
Lowe, Gareth W., and Pierre Agrinier
1960 Mound 1, Chiapa de Corzo, Chiapas, Mexico. Papers of the New World Archaeological Foundation, No. 8, Provo.
Lowe, Gareth W., and Alden Mason
MacNeish, Richard S.
MacNeish, Richard S., and Frederick A. Peterson
Meggers, Betty J., and Clifford Evans
Meggers, Betty J., Clifford Evans, and Emilio Estrada
Miles, S. W.
Navarrete, Carlos
Peterson, Frederick A.
Piña Chan, Román
Porter, Muriel N.
Posnanski, Leopold
Reichel-Dolmatoff, Gerardo
Rouse, Irving, and J. M. Cruzen
1963 Venezuelan Archaeology. Yale University Press.
Sanders, William T.
REFERENCES

SMITH, Robert E.
1955 Ceramic Sequence at Uaxactun, Guatemala. Publication 20. Middle American Research Institute, Tulane University, New Orleans.

SORENSON, John

STIRLING, Matthew W.

STONE, Doris Z.

VOGT, Evon Z.

WAUCHOPE, Robert
1948 Excavations at Zacualpa, Guatemala. Publication No. 14, Middle American Research Institute, Tulane University, New Orleans.

WEIANT, C. W.

WILLEY, Gordon R.

WILLEY, Gordon R., and James C. Gifford

WILLEY, Gordon R., and Charles R. McGimsey

WILLEY, Gordon R., Gordon F. Ekholm, and Rene Million