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ABSTRACT

This research employs an exhaustive search of different at-
tribute selection algorithms in order to provide a more struc-

tured approach to learning design for prediction of Alzheimer’s

clinical dementia rating (CDR).

Categories and Subject Descriptors
1.5.1 [Pattern Recognition]: Models

General Terms

Design, Experimentation, Performance
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1. INTRODUCTION

Alzheimer’s disease causes progressive and fatal degenera-
tion of the brain. It leads to dementia, a condition in which
a loss of memory and mental abilities is severe enough to
affect a person’s daily life [3]. It is a commonly occurring
disease amongst the elderly; in 2006, there were more than
26 million cases of Alzheimer’s disease worldwide [3]. More-
over, because of the global increase in average lifespan, it
is estimated that Alzheimer’s disease may affect over 115
million people worldwide by the year 2050 [4]. A recent
study suggests these predictions may underestimate the true
prevalence of the disease [1]. If that is the case, current es-
timates that healthcare costs associated with Alzheimer’s
disease in the US in 2013 exceeded 200 billion USD [4] may
be conservative.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
is an ongoing project that aims to identify biomarkers for
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Alzheimer’s disease [2] so that such tests can be developed.
The ADNI data set currently has information about more
than 1,000 participants. For each participant, over 100 at-
tributes are recorded; some of these attributes include age,
volumes of various parts of the brain, levels of specific pro-
teins in cerebrospinal fluid, and biomarkers from the Myriad
Genetics Rules Based Medicine panel, and alleles for certain
genes. (A recently published study suggests that the levels
of certain lipids found in the blood would also be helpful
attributes [4], but the levels of these lipids in the ADNI
participants are not yet available.)

The ADNI data includes the clinical dementia rating (CDR)
of 821 participants. In the ADNI data, participants are di-
vided into three possible categories defined in the CDR scale:
normal (no cognitive impairment), mildly cognitively im-
paired, and moderately cognitively impaired (i.e., requiring
some help for basic personal care). While the most recent
version of the CDR scale classifies patients into five differ-
ent categories rather than three [5], the CDR scale used in
the ADNI data can still serve as a useful output class for
predictive models.

2. METHODS

Attribute selection is an important element in creating an
effective machine learning ensemble. Even though it is ac-
knowledged as important, approaches to attribute selection
are often ad-hoc or incomplete. This research employed an
exhaustive search of different attribute selection algorithms
in order to provide a more structured approach to learning
design.

Several different algorithms were used for attribute selec-
tion. ClassifierSubsetEval, CFSSubsetEval, and Consisten-
cySubsetEval were paired with the GreedyStepwise, Best-
First, and SubsetSizeForwardSelection search methods. The
lists of attributes produced by each evaluator/method pair
were then compared. Not all of these pairings selected the
same set of attributes. However, there were 15 attributes
that ranked in the top 20 in sets produced by at least three
of the ten pairings. These 15 were noted. Before we com-
pleted the next stage of our experiments, a set of 18 ad-
ditional attributes we had not included in the original 108
became available. These new attributes comprised biologi-
cally significant SNP haplotype data. These SNP data were
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Model Accuracy Specificity Sensitivity
LogitBoost (numlterations=13) - DecisionStump 79.29% 50.40% 90.50%
Bagging - REPTree (numFolds=3) 78.08%

Decorate - BayesNet 76.00%

DTNB 77.83% 94.40%
LogitBoost - DecisionTable 79.29%

Ridor 76.49% 96.30%

MultiBoostAB - MultiLayerPerceptron (learningRate=0.1, hiddenLayers=32)

40.90% 86.10%

CostSensitiveClassifier([0,5.0;1.0,0], minimizeExpectedCost=TRUE)

80.00%

NaiveBayes

64.30%

Decorate - LogitBoost - DecisionTable

79.29% 92.00%

Vote (majority vote) - {logitBoost - DecisionStump, Decorate —- DTNB}

81.49% 48.70% 94.20%

Figure 1: Models with the most notable results
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Figure 2: Best model (82.095% accuracy)

added to the set of 15 selected in the initial screening and we
proceeded with a second screening on the new intermediate
set of 33 attributes.

In all, Over 100 different models were generated with fifty-
three models used as a base set from which to build majority-
voting ensembles. These models were chosen because they
either (1) had an accuracy of greater than 76% or (2) had
an unusually high specificity, since most of the models with
accuracy had relatively low specificity.

We used a simple program to do an exhaustive search
of all possible combinations of three models selected from
the 53 models chosen without replacement. The ensemble
with the highest accuracy was then constructed and added
to the group of models. Several meta techniques proved to
be helpful. When paired with rule-based classifiers, Deco-
rate and Logitboost produced all the non-ensemble models
that achieved 794+% accuracy shown in Fig. 1. CostSensi-
tiveClassifier produced the best RandomForest model and,
combined with MultiBoostAB, the best RBFNetwork model.
Bagging helped produce the best REPTree model (Fig. 2).

Our basic program showed that it is possible to search
through a large number of potential ensemble combinations
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Decorate - DTNB

LogitBoost -
DecisionTable

Decorate - DTNB

quickly without having to build the models in Weka. In
a matter of minutes, we were able to search through (%)
= 23,426 majority-vote three-model ensembles; building all
of these models manually in Weka likely would have taken
weeks. Furthermore, our exhaustive search revealed an en-
couraging fact: there were many different ensembles that
achieved an overall prediction accuracy of 80% or better.
Time constraints made it impractical to build every ensem-
ble with 80+% prediction accuracy in Weka so that it could
be added to the original 53 models, so we only built the
best ensemble format each iteration. However, it is possible
that the other ensembles might have had different confusion
matrices and, therefore, might have had the potential to be
combined into even better ensembles of ensembles.

3. CONCLUSIONS

A structured approach to ensemble learning can effectively
examine the space of attribute selection algorithms and clas-
sification algorithms by generating all combinations of three
models, and examining their output to determine an ensem-
ble’s accuracy on the test data. Some models appear to
improve accuracy when they are included multiple times in
the ensemble hierarchy. It is unlikely that this hierarchy
would have been discovered by traditional ad-hoc methods.
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