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ARTICLE INFO ABSTRACT

Many empirical applications in the experimental economics literature involve interval response data. Various
methods have been considered to treat this type of data. One approach assumes that the data correspond to the
interval midpoint and then utilizes ordinary least squares to estimate the model. Another approach is to use
maximum likelihood estimation, assuming that the underlying variable of interest is normally distributed. In the
case of distributional misspecification, these estimation approaches can yield inconsistent estimators. In this
paper, we explore a method that can help reduce the misspecification problem by assuming a distribution that
can model a wide variety of distributional characteristics, including possible heteroskedasticity. The method is
applied to the problem of estimating the impact of various explanatory factors associated with individual dis-
count rates in a field experiment. Our analysis suggests that the underlying distribution of discount rates exhibits
skewness, but not heteroskedasticity, In this example, the findings based on a normal distribution are generally
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1. Introduction

Many empirical applications in the experimental economics litera-
ture involve interval response data. Examples include commonly used
measures of risk aversion (see Harrison and Rutstrom, 2008; Charness
et al., 2013, for an overview), second-price Vickrey auctions with in-
terval bidding possibilities (Banerjee and Shogren, 2014), estimation of
willingness-to-pay (WTP; Dominitz and Manski, 1997; Hanley et al.,
2009, 2013), and individual discount rates (Coller and Williams, 1999;
Harrison et al., 2002). The typical critique against tasks that elicit point
estimates in these contexts is “the payoff dominance” problem first
raised by Harrison (1992). The Becker-DeGroot-Marschak (BDM)
procedure, in particular, is known to have weaker incentives around the
optimum. In addition, data that rely on single-response methods, such
as the BDM, to elicit risk preferences or WTP are significantly noisier
(Harrison, 1986).

Various methods have been considered to treat this type of data.
One approach assumes that the data correspond to the interval mid-
point and then utilizes ordinary least squares to estimate the model.
Another approach is to use maximum likelihood estimation, assuming
that the distribution of the underlying variable of interest is of a par-
ticular form, such as the normal. While these methods are widely used
in the literature, they can yield inconsistent estimators and thus mis-
leading results in cases of distributional misspecification or in the
presence of heteroskedasticity.

In this paper, we consider the implications of using an estimator,
which is based on a flexible distribution that can accommodate a wide
range of skewness and kurtosis, hence having the potential to reduce
the impact of distributional misspecification. In particular, we use
maximum likelihood estimation of an interval response regression
model that corresponds to the skewed generalized t distribution (SGT)
and the generalized beta of the second kind (GB2). The SGT can model a
wide range of distributional characteristics for real-valued skewed and
leptokurtic data and includes many important distributions, such as the
normal, Laplace, generalized error distribution, and skewed variations
of these distributions as special and limiting cases. The GB2 is a flexible
distribution for positive valued outcomes. These two flexible distribu-
tion functions serve as alternatives to the normal distribution often
employed in interval regressions.

We apply this method to the problem of estimating the effects of
various possible explanatory factors on individual discount rates in a
field experiment described in Harrison et al. (2002), hereafter referred
to as HLW. In this experiment, the authors elicit individual discount
rates from subjects and test whether these rates vary (1) across
households and (2) over time. HLW find that discount rates vary sig-
nificantly with respect to several sociodemographic variables but not
over a one- to three-year time horizon. This finding provides an im-
portant contribution to our understanding of the nature of individual
discount rates, given their essential role in intertemporal welfare ana-
lyses.
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In this paper, we consider the implications of allowing for more
general distributions in estimating the model. We observe that the
underlying distribution of reported discount rates exhibits skewness,
heteroskedasticity, or both. This is inconsistent with the assumption of
normality and can impact parameter estimates. When applying more
flexible distributions, which allow for a wide range of skewness and
kurtosis values, such as SGT and GB2, we find that the nominal discount
rates are significantly impacted by some sociodemographic factors. We
compare and contrast our results with those obtained under the as-
sumption of normality and find that the magnitudes and statistical
significance of the coefficients are sensitive to the specification used,
but they are generally consistent with the findings of HLW.

In particular, our results show that the GB2 family generally dominates
the SGT as it provides a better fit with fewer parameters. Within the GB2
family, the 2-parameter and 3-parameter gamma (GA) and generalized
gamma (GG) distributions are arguably the best choice, considering fit,
parsimony, and easy interpretation. An added advantage of the GB2 family
over SGT is that an assumption of “heteroscedasticity” (making o a function
of covariates) is unnecessary, considerably simplifying the interpretation of
parameters. For both the GA and GG, we find support for the HLW con-
clusion that rates appear to be somewhat greater at a 6-month delay than
for the longer delays, but constant across the longer delays. We also find
that in addition to the discount rate that predictors found to be significant in
HLW, our estimation of the GB2 model uncovers additional statistically
significant covariates.

This paper contributes to a growing literature in experimental
economics, which emphasizes various approaches to data analysis that
are widely used by other research communities (Ashley et al., 2010;
Frechette, 2012). While we discuss some well-known methods and their
application to interval response data, we also highlight a new metho-
dological framework and its advantages. We emphasize the important
implications that the underlying theory has for econometric models and
show how to check robustness of results to model specifications.

We focus this paper on the impact of accommodating diverse dis-
tributional characteristics of individual responses of monetary discount
rates, rather than addressing the more complicated problem of joint
estimation of the distribution and an underlying utility function as
explored in Anderson et al. (2008). The methodological framework is
outlined in Section 2. Section 3 provides an application of the methods
to the problem of estimating individual discount rates, and Section 4
concludes.

2. Methodology
2.1. The model and likelihood function

The proposed model can be summarized as follows:

yW=Xf+sg i=1,2,.n 6h)
where only the thresholds containing the latent variable y* are ob-
served, X; is a 1xK vector of explanatory variables with a corresponding
Kx1 coefficient vector §, and the ¢; are assumed to be independently and
identically distributed random disturbances. The observed upper and
lower thresholds of the latent variable y* are denoted by U; and L;
respectively.

Stewart (1983) notes that inconsistent parameter estimates may
result from using regular ordinary least squares (OLS), with the de-
pendent variable being assigned to the value of the interval midpoint,
and the open-ended groups being assigned values on an ad hoc basis.
Stewart outlines different approaches to yield MLE (maximum like-
lihood estimation) under the assumption of normality and applies these
methods to the problem of estimating an earnings equation. Stata's in-
treg command facilitates MLE of interval response data in the case of
normally distributed errors and allows for the presence of hetero-
skedasticity.
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We also apply a MLE approach to this estimation problem but allow
for possibly non-normal distributions, which can accommodate skew-
ness and kurtosis. We begin by noting that the conditional probability
that y* is in the interval (L;, U) is given by
Pr(L; <y < U) = F(Us; B, 01X) — F(L;; B, 61X)), @
where F(.) denotes the cumulative conditional distribution of yl.* and 6
denotes a vector of distributional parameters. The corresponding log-
likelihood function for interval regression models is given by

2B, ) = Y enlF(U; B, 61X) — F(L;; B, 61X)] @

Interval regression programs allow not only for interval data but for
censored data as well. For example, the Stata interval regression pro-
gram, intreg, accommodates right censored ((—oo, U;]) and left censored
([L;, =)) data by replacing the corresponding terms in (3) with F(U; §,
0|X) and (1 — F (LB, 61X:)), respectively.

Maximum likelihood estimation (MLE) will be used throughout this
paper where Eq. (3) is maximized over the unknown parameters (3 and
0).

2.2. Distributional assumptions

As noted in the introduction, the properties of the parameter esti-
mates can be sensitive to the distributional assumptions. The most
common implementation of the MLE approach to this type of data in the
literature is based on the assumption of normally distributed errors. As
mentioned earlier, Stata's interval regression command (intreg) assumes
normally distributed errors and is a Tobit-like estimator for grouped
data. However, these estimators can be inconsistent if the errors are not
normally distributed or are associated with heteroskedasticity.
Adaptive or semiparametric estimation of econometric models avoid
specifying a particular probability density function but may be difficult
to implement. Partially adaptive estimation relaxes the normality as-
sumption by adopting a more flexible probability density function to
approximate the actual error distribution. Caudill (2012) uses a mixture
of normal distributions. Cook and McDonald (2013) use an inverse
hyperbolic sine distribution to estimate censored regression models,
finding that this specification improves estimator performance for the
cases considered. We will use the skewed generalized t (SGT) and the
generalized beta of the second kind (GB2), each of which allows a wide
range of skewness and kurtosis. The SGT can model real-valued re-
sponses and includes the normal as a special case. The GB2 is a flexible
model for applications in which the responses are positive, such as in
the example considered in Section 3.

2.3. The skewed generalized t distribution

The SGT was introduced by Theodossiou (1998) and extends the
generalized t (GT) (McDonald and Newey, 1988) and the skewed t (ST)
(Hansen 1994) and allows for a wide range of skewness and kurtosis;
for example, see Kerman and McDonald (2013). Other special cases of
the SGT include the skewed generalized error distribution (SGED),
skewed Laplace (SLaplace), generalized error distribution (GED),
skewed normal (SNormal), t, skewed Cauchy (SCauchy), Laplace, Uni-
form, Normal, and Cauchy. The five-parameter SGT can be defined by
the following density function:

p

SGT (y; 4, 4, 0, p, q) =
2091/PB 1 1+ b= a+1/p
q » 4 qoP (1 + Asign(y — )P
C)]

where — 00 < y < o0 and B(., .)denotes the beta function.
The SGED is a limiting case of the SGT defined by
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Fig. 1. SGT distribution tree (adapted from Hansen et al., 2010).

Fig. 2. GB2 distribution tree (McDonald, 1984).
GB2
4 parameters q>0 p=1 g=1
3 parameters GG
p 0P p=1
=1 q >0 p=1
2 parameters ‘ LN ‘ ‘ GA ‘ ’ Weibull Log-logistic
SGED (y; u, A, 0, p) = UmSGT (y; u, 4, 0, p, q) 2.4. The generalized beta of the second kind
q—)DO
p
_[%] The generalized beta of the second kind (GB2) is a well-known four-
_ pe o (1+Asign(y—)) parameter distribution for positive-valued random variables that has
20'1"( 1 ) been successfully used in applications such as the distribution of income
P 5)

where u = X is a location parameter, o is a positive scale or dispersion
parameter, and I'(.) denotes the gamma function." The parameter A,
— 1 < 1 < 1, measures skewness, with the probability of Y being greater
than p given by ( ) hence, 1 = 0 corresponds to a symmetric pdf
(probability den51ty function). The parameters p and q are positive and
impact the shape of the pdf, and the product pq is referred to as the
degrees of freedom parameter. The interrelationships between these
pdfs are shown in Fig. 1.

The SGT family of distributions provides a generalization of many
methods that have been used for analyzing models with interval re-
sponse data. The expected value of the response corresponding to the
SGT and its various special cases can be evaluated using
Esor(YIX) = X + 210 {—qupB(Z/p’ 1= l/p)}

B(1/p, @)

q“PF(Z/p)}

Escep(Y1X) = XB + 2/10{ T/p)

(6. a-b)

1 Allowing o to be a function of the explanatory variables can model heteroskedasticity.
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and stock returns. It includes the generalized gamma (GG), gamma
(GA), Weibull (W), lognormal (LN), Burr3, and Burrl2, among others,
as special or limiting cases. Fig. 2 illustrates the relationships between
the members of the GB2 family.

The GB2 pdf is defined by

ep(ln(y)—é)/cf

GB2(y; 6,0,p, q) = ovB(p, (1 + e(ln(y)—é)/a)pw

()

where o, p, and g denote positive distributional parameters
(McDonald, 1984). Important special cases of the GB2 are the Burr3 and
Burrl2, corresponding to ¢ = 1 and p = 1, respectively, and the gen-
eralized gamma as the following limiting case:

GG(y; 8, o, p)

lim GB2(y; q°9, o, p, q)
Z:;ch)—a)/ae-ean@-a)/a
oyI'(p) ®)
The GG includes the gamma (GA) and Weibull (W) as the following
special cases:

GA(; 6, p)

>

G(y;6,0=1,p)
eD(InG)=8) p=e(In(y)=6)

yI'(p) 9
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and
W@;6,0) = GG(;d,0,p=1)
eIn()—8)/ap—e(n(y)-8)/c
B yo 10
Finally, the lognormal
o—(In(1)—8)? /202
LN(y; 6, 0) = }’ZT an

is a well-known limiting case of the GG and GB2.

The regression specification in (1) corresponding to the GB2 family
can be obtained by letting the parameter § be a function of the ex-
planatory variables, for example, § = X;8. The econometrics package
Stata estimates the exponential, gamma, Weibull, log-logistic, and
generalized gamma regression specifications for individual observa-
tions but not for interval data or data with heteroskedasticity. As with
the SGT, possible heteroskedasticity can be modeled by allowing the
scale parameter, o, to be a function of the explanatory variables, o(X).2

The expected value of the dependent latent variable corresponding
to the GB2 and its special cases can be evaluated using the following
results:

I'(p+0)l(q—o0)

E(Ygpo|X) = ¥ , 0<q

I'(p)I'(q) (12.a)

I'(p +o0)

— XM~ -/
E(YgelX) =e Q) 12.b)
E(YiyIX) = X+’ (12.0)

From these results, we see that the f3; in the GB2 family can be in-
terpreted as estimating the percentage change in the y* corresponding
to a unit change in X;. Thus, one might expect the SGT and GB2 re-
gression coefficients to be roughly related to each other as follows:

Bser ® EG)Bgp, (13)

3. Experimental design, model specification, statistical
distribution, and statistical analysis

3.1. Experimental design

In this section we apply the previously described methods to the
problem of estimating individual discount rates in experimental eco-
nomics—a field experiment described in HLW. In this experiment a
demographically representative sample of 268 Danish individuals aged
between 19 and 75 years old® were invited to answer survey questions
with real monetary rewards. Survey questions were designed by
Coller and Williams (1999), who conducted similar experiments with
university students in controlled laboratory settings. To elicit discount
rates, individuals were asked whether they would prefer $100 in one
month or $100 + x in one + y months, where x > $0 andy = 6, 12, 24,
or 36 months depending on the specific condition of the experiment.
Each subject faced a sequence of ten questions, each with a different x.
The point at which an individual switched from choosing the current
income option to taking the delayed income option provided a bound
on his or her discount rate. Participants were provided with the interest
rates associated with the future payment option and knew that they
would be paid for one randomly selected question.

Participants were randomized into one of five treatment groups that
differed according to the possible time horizons for future income

2 This specification accommodates variance of log(y) because the variance of log(y) is
given by o[ ¥'(p) + ¥'(q)] where W() is the digamma function.

3 These individuals were selected based on their prior participation in the European
Community Household Panel Survey (ECHP) administered by the Danish Social Research
Institute (SFI) in collaboration with the Danish Ministry of Business and Industry.
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options: (1) 6 months, (2) 12 months, (3) 24 months, (4) 36 months,
and (5) all four time horizons presented to an individual simulta-
neously. A total of 118 individuals participated in 15 single-horizon
sessions,” and 150 individuals participated in the 12 multiple-horizon
sessions.”

In addition to the main discount rate elicitation questions, re-
searchers also asked a wide range of sociodemographic questions, such
as participants’ gender, age, household income, occupation, education
level, retired and employment status, and marital status. Subjects were
also asked about their access to financial accounts, such as checking
account, credit card, or line of credit; annual interest rates, current
balance on those accounts; and their perception of their own credit
worthiness. These and other covariates are more formally defined in the
first two columns of Table A.1 in Appendix A.°

The experiment was designed to test two specific hypotheses. The
first hypothesis is that discount rates for a given time horizon do not
differ with respect to an individual's sociodemographic characteristics.
The second hypothesis is that discount rates for a given individual do
not differ across time horizons. Harrison et al. (2002) found that dis-
count rates among this sample of Danish individuals were relatively
constant over the one-year to three-year time horizon but varied sig-
nificantly across several sociodemographic characteristics. In parti-
cular, discount rates were significantly affected by the length of edu-
cation, retirement status, unemployment, and the likelihood of
obtaining a loan or being approved for a credit card.

3.2. Application of the SGT and GB2: model specification

In this section, we consider the implications of using more flexible
distributions, namely the SGT and GB2 families. Parameter estimates
were obtained by maximizing the log-likelihood Eq. (3) using various
numerical optimization algorithms in MATLAB for selected distribu-
tions, with and without the assumption of homoskedasticity. Two re-
gression scenarios were considered in some of these estimations: first,
the full regression scenario (full) includes time-horizon variables and
sociodemographic controls

DR = BL+7Xi + &

where DR; stands for the discount rate of individual i, T; is a vector of
the time-horizon indicators for the scenario that individual i received,
and X; are the various socio-demographic controls for the individual i.
The second scenario (intercept specification) considered is the model
with only a constant term, such that

DRZ' = ﬁO + €

The parameter estimates, standard errors, and log-likelihood (£)
values for each of these specifications are reported in the appendices (B,
C, and D). Appendices B and C, respectively, include estimates for the
full and intercept specifications for the SGT and GB2 families under the
assumption of homoskedasticity, and Appendix D reports the corre-
sponding results for the full SGT and GB2 heteroskedastic model spe-
cifications.”

3.3. Selecting an appropriate statistical distribution

The estimation results obtained from using fourteen statistical dis-
tributions are reported in the appendices. Their interrelationships are
depicted in Figs. 1 and 2 with distributions higher on a given tree

“ Within the single-horizon sessions, there were 26, 32, 31, and 29 subjects, respec-
tively, in the 6-month, 12-month, 24-month, and 36-month treatments.

S This particular study is an excellent application because of the extremely low in-
cidence of response inconsistency.

S All supplementary online materials referenced in the paper can be obtained at
https://economics.byu.edu/Documents/Faculty/Olga%20Stoddard/APPENDIX.pdf.

7 Formulas used to calculate clustered standard errors are reported in Appendix E.
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Fig. 3. Goodness of fit for the SGT distribution family.
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having greater flexibility. For nested distributions on the same dis-
tribution tree, likelihood ratio tests are frequently used to select the best
model. For example, the GED and Normal on the SGT distribution tree
can be compared by taking twice the difference between their loglike-
lihood values found in Table B.1 (in Appendix B). This yields a logli-
kelihood value of 136 (LR = 2 (2002.0-1934.0) with the test statistic
having an asymptotic Chi square distribution with one degree of
freedom. Thus the GED provides a statistically significant improvement
relative to the normal.

The likelihood ratio test is not valid for distributions on different
trees or for nonnested models. For example, the SGT and GB2 can't be
compared using a likelihood ratio test. To compare non-nested speci-
fications, alternative criteria have been considered, such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC),
Vuong (1989) or Clarke (2007) paired sign test.® These criteria reward
goodness of fit as measured by £ (the optimized value of the log-like-
lihood function) and penalize a model's complexity as measured by the
number of parameters (k). Thus, other things equal, a model with fewer
parameters would be selected. The values of 4, AIC, BIC, and selected
likelihood ratio values for the fitted distributions and different model
specifications are reported in the last three rows of Tables B.1, B.2, C.1,
C.2, D.1, and D.2 (in Appendices B, C, and D). For the full model with
time horizon and sociodemographic variables, Figs. 3 and 4 summarize
these goodness of fit indices for the SGT and GB2 families, respectively.

From Fig. 3 and using likelihood ratio tests, the SGT and SGED are
seen to be observationally equivalent because of the large estimated
value of the parameter q and yield statistically significant improved fits
relative to their other special or limiting cases, including the normal.

8 The AIC and BIC are defined by AIC = 2(k — ¢)andBIC = k log(n) — 2¢ where k is the
number of estimated parameters and { is the optimized value of the log-likelihood
function. A common form for the Vuong test is half of the difference of the BICs of the
competing models.
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For the GB2 family, depicted in Fig. 4, the GB2 provides a statistical
improvement relative to the Burr3 and Burrl2, but not for the GG or
gamma. Taking into account model complexity, as measured by the BIC
or Vuong test and AIC, the SGED would dominate the SGT and the GG
and gamma would dominate the GB2, SGT, and SGED.

Fig. 5 compares the fitted pdfs for the GG, SGED, and normal ob-
tained from the reported interval responses.’ Corresponding expected
discount rates are reported in Table 1.'° The normal is centered around
its estimated mean of 28.3 and implies a positive probability of a ne-
gative discount rate, which is inconsistent with economic theory. The
fitted pdf for the SGED is highly skewed and conforms to the expecta-
tion that discount rates will be positive. The SGED's large expected
value reported in Table 1 is due to its thick right tail. In a sense, because
we know that discount rates will be positive, using an SGED or SGT to
model discount rates could be viewed as a type of model over-
specification. Based on these comparisons, we will focus the rest of our
analysis on the GG.

3.4. Economic analysis

We now consider the two hypotheses considered by HLW. For
convenience, the estimated results corresponding to the normal, SGED,
Lognormal, and GG specifications are presented in Table 2. It is im-
portant to recall from Eq. (13) that the “regression” coefficients in the
SGT and GB2 families have different interpretations,

OF Bser 1X) OF (g2 1X)

A X,

ax, (B)sgrand

= (ﬁi)cszE (yGBZ 1X).

© The estimates of the distributional parameters are given in Tables B.3 and C.3 (in the
corresponding appendices). The normal is included as a benchmark because of its use in
statistical software for interval regression models.

10 The expected values are evaluated using equations (6 a-b) and (12 a—c).
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Fig. 4. Goodness of fit for the GB2 distribution family.
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HLW found that varying the time horizon appeared to have little
effect on discount rates for the 12-, 24-, and 36-month time horizons,
though the 6-month time horizon was about 6 percentage points higher.
Using a Wald test on the GG specification, we found that the equality of
the coefficients for 12-, 24-, and 36-month time horizons could not be

rejected; however, the coefficient for the 6-month horizon differed

significantly.

The sociodemographic variables having a significant impact in the
normal specification included the length of education and retirement,
which were associated with lower and higher discounts of

approximately 9% and 12%, respectively. Unemployment and having a
poor chance of getting approval for a loan or credit card were sig-
nificant at the 10% level and had associated estimates of —8% and 8%,
respectively. These same variables are significant with a GG specifica-

tion. However, income (“rich”), owner-occupied housing (“owner’), and
whether the subject has a positive balance in a line of credit or credit
card (“balance”) were significant at 5-, 10-, and 15-percent levels, re-
spectively. A comparison of the marginal impacts of “important” vari-

ables implied by both specifications is presented in Table 3, where the
GG coefficients from Table 2 are multiplied by the corresponding

14
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Table 1
Expected discount rates.

Distribution Expected discount rate
Normal 28.3
SGED 51.1
GG 27.9

Table 2
Selected results for the full model (homoskedasticity), n = 696.

Normal SGED Lognormal GG
t6 34.8607*** 31.6146%** 3.3631%** 3.3252%**
(7.8358) (4.3030) (0.2496) (0.9007)
t12 28.9523%** 31.2218*** 3.1493*** 3.1066***
(7.7221) (3.7192) (0.2510) (0.8963)
t24 27.4407%** 29.8356%** 3.0714**= 3.0285%**
(7.9025) (4.5096) (0.2497) (0.8963)
t36 27.8716%** 29.4325%** 3.0897*** 3.0453***
(8.2525) (4.6663) (0.2615) (0.8974)
multiple 0.8359 —-0.1392 —-0.0173 —-0.0337
(2.4257) (1.4425) (0.0899) (0.0889)
female 1.0149 0.3653 0.04637 0.0456
(2.1972) (1.156) (0.0779) (0.0750)
young —1.0947 0.5725 0.00036 0.0105
(3.3403) (2.3009) (0.1145) (0.1132)
middle 0.1786 —2.3528** —0.0956 —0.0520
(2.6682) (1.1595) (0.0976) (0.0941)
old —0.45954 —-0.7187 —0.0919 —0.0441
(3.2395) (2.4376) (0.1166) (0.1153)
middlel —1.3060 —0.5305 —-0.0627 —0.0593
(2.9677) (2.0558) (0.0993) (0.0932)
middle2 —3.2142 —1.8643 —0.1576 —0.1559
(3.8167) (2.0993) (0.1393) (0.1338)
rich —5.3412 —1.4471 —0.2958%* —0.3134%*
(3.9006) (2.8488) (0.1377) (0.1307)
skilled 0.74265 1.1748 0.07158 0.06769
(2.4868) (1.8887) (0.0930) (0.0887)
student 4.2049 —1.6263 0.0321 0.0481
(4.2717) (2.6647) (0.14737) (0.1365)
longedu —9.2027%** —2.2147 —0.3975%* —0.3991%=*
(2.5555) (1.6893) (0.0956) (0.0926)
copen —1.1308 —0.0859 —0.0009 0.00673
(2.9125) (1.9748) (0.1083) (0.1024)
town 3.1719 2.2304 0.1493* 0.1196
(2.4045) (1.4922) (0.0896) (0.0832)
owner —3.7647 —2.0555 —0.1769* —0.18608**
(2.5200) (1.4032) (0.0922) (0.0860)
retired 12.3783%** 0.1513 0.3592+** 0.4087***
(4.2659) (3.4017) (0.1456) (0.1289)
unemp —7.7693* 1.1640 —0.3123%* —0.3503**
(3.7921) (2.8049) (0.1438) (0.1387)
single —2.4016 —1.0694 —0.1229 —0.1007
(2.6878) (1.7728) (0.09368) (0.0883)
kids 0.2498 —0.1479 0.0412 0.0586
(2.5272) (1.0956) (0.0912) (0.0893)
gsize 0.0239 —-0.1733 0.0018 0.0050
(0.3125) (0.1665) (0.0109) (0.0108)
balance 1.8294 2.0692 0.1451%* 0.1353*
(2.113) (2.002) (0.0728) (0.0716)
Chances 7.6481%* 0.7959 0.2746** 0.279**
(3.3035) (2.3305) (0.1227) (0.1169)
LogL —2002.0 —1899.8 —-1871.7 —1866.8
BIC 4067.1 3982.9
3806.5 3799.2
AIC 4056 3855.6
3795.4 3787.6

expected discount rate (27.9) and are in fairly close agreement with the
results from the normal assumed by HLW.

Next, we test for the presence of possible heteroskedasticity in the
different specifications. Likelihood ratio tests can be used to test the
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Table 3
Comparison of the marginal impact of sociodemographic variables, n = 696.

Variable Normal GG

rich -5.34 —8.74
longedu -9.20 —11.14
owner —-3.76 —-0.5.19
retired 12.38 11.40
unemp -7.77 -9.77
balance 1.83 3.78
chances 7.65 7.79

null hypothesis of homoskedasticity. Based on a comparison of the log-
likelihood values for homoskedastic and heteroskedastic specifications
reported in Table B.1 and Table D.1, respectively (see appendices), we
reject the null hypothesis of homoskedasticity for the SGT family. For
example, the LR value for the Normal is 98.8 (=2 (2002.0-1952.6)),
with the test statistic being asymptotically distributed as a chi square
with 25° of freedom. Testing for heteroskedasticity in the GG specifi-
cation yields a statistically insignificant likelihood ratio value of
29.6(=2(1866.8-1852.0)). Hence, while we reject the assumption of
homoskedasticity with the Normal specification, we do not reject it
with GG. The same results hold when comparing the more general
forms of the GB2 and SGT families with and without heteroskedasticity.

4. Summary and conclusions

Interval response data are used extensively in the experimental
economics literature to estimate such important variables as discount
rates, willingness to pay, and risk aversion. While various methods have
been widely used in the prior literature to estimate models of this type,
their properties can be sensitive to distributional assumptions and can
yield inconsistent estimates.

In this paper, we present a methodology that accommodates diverse
distributional characteristics. The method of estimation is based on the
assumption of a flexible distribution, which allows for a wide range of
data skewness and kurtosis values and has the potential to reduce the
impact of distributional misspecification. In particular, we use max-
imum likelihood estimation of an interval response regression model
that corresponds to the skewed generalized t distribution (SGT) and the
generalized beta of the second kind (GB2). These methods are described
and applied to the problem of estimating individual discount rates in a
field experiment considered by HLW.

The results of this paper generally confirm those obtained using a
normal specification (or HLW) that discount rates may be somewhat
greater for a 6-month delay than for longer delays but are constant for
longer delays. Additionally, both specifications find discount rates to be
significantly impacted by the length of education, retirement status,
unemployment, and the likelihood of obtaining a loan or being ap-
proved for a credit card and yield similar marginal effects. The GG
specification also finds income and owner-occupied housing to be sta-
tistically significant.

In particular, our results show that the GB2 family generally dom-
inates the SGT as it provides a better fit with fewer parameters. Within
the GB2 family, the 2-parameter and 3-parameter gamma (GA) and
generalized gamma (GG) distributions are arguably the best choice,
considering fit, parsimony, and ease of interpretation. An added ad-
vantage of the GB2 family over SGT is that an assumption of “hetero-
scedasticity” (making o a function of covariates) is unnecessary, con-
siderably simplifying the interpretation of parameters. For both the GA
and GG, we find support for the HLW conclusion that rates appear to be
somewhat greater at a 6-month delay than for the longer delays, but
constant across the longer delays. We also find that in addition to the
discount rate predictors found to be significant in HLW, our estimation
of the GB2 model uncovers additional statistically significant covari-
ates.
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While our results generally confirm the results of HLW, we antici-
pate that further applications of this methodology will have important
implications to estimation of other interval response data, particularly
in the case of heteroscedasticity. To make these methods more acces-
sible, a STATA module has been written and is currently being tested.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.socec.2017.10.003.
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